K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

\(\left\{{}\begin{matrix}x^2+y^2=2xy+x-y+2\\2x^2+3y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2xy-x+y-2=0\\2x^2+3y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2-\left(x-y\right)-2=0\\2x^2+3y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)\left(x-y-2\right)=0\\2x^2+3y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=x+1\\x=y+2\end{matrix}\right.\\2x^2+3y^2=21\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}y=x+1\\2x^2+3\left(x+1\right)^2=21\end{matrix}\right.\Leftrightarrow...\)

TH2: \(\left\{{}\begin{matrix}x=y+2\\2\left(y+2\right)^2+3y^2=21\end{matrix}\right.\Leftrightarrow...\)

24 tháng 3 2019

nhân  chéo 2 vế sẽ thành hpt đẳng cấp

\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)

\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)

\(\Leftrightarrow16x^2+14xy+3y^2=0\)

\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)

22 tháng 2 2020

Cầm máy tính ra giải là xong

22 tháng 2 2020

???????????????????????????????

22 tháng 2 2020

\(\left\{{}\begin{matrix}x^2-2xy-3y^2=0\\x^2+y^2+2x+3y=19\end{matrix}\right.\) giải PT \(x^2-2xy-3y^2=0\)

\(\Leftrightarrow x^2-2xy+y^2-4y^2=0\) \(\Leftrightarrow\left(x-y\right)^2-4y^2=0\)

\(\Leftrightarrow\left(x-y+2y\right)\left(x-y-2y\right)=0\) \(\Leftrightarrow\left(x+y\right)\left(x-3y\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\x=3y\end{matrix}\right.\)

+) Nếu x=-y Thay vào PT thứ 2 ta được

\(\left(-y\right)^2+y^2+2\left(-y\right)+3y=19\) \(\Leftrightarrow2y^2+y=19\) \(\Leftrightarrow2y^2+y-19=0\)

Đây là PT bậc 2 ẩn y nên\(\Delta=1^2+2.4.19=153>0\)

\(\Rightarrow\) PT có 2 nghiệm phân biệt \(\left[{}\begin{matrix}y=\frac{-1+3\sqrt{17}}{4}\Rightarrow x=\frac{1-3\sqrt{17}}{4}\\y=\frac{-1-3\sqrt{17}}{4}\Rightarrow x=\frac{1+3\sqrt{17}}{4}\end{matrix}\right.\) (thỏa mãn)

+) Nếu x=3y Thay vào PT thứ 2 ta được

\(\left(3y\right)^2+y^2+2.3y+3y=19\) \(\Leftrightarrow9y^2+y^2+6y+3y=19\)

\(\Leftrightarrow10y^2+9y=19\) \(\Leftrightarrow10y^2+9y-19=0\) \(\Leftrightarrow\left(10y^2-10y\right)+\left(19y-19\right)=0\) \(\Leftrightarrow10y\left(y-1\right)+19\left(y-1\right)=0\)

\(\Leftrightarrow\left(10y+19\right)\left(y-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=3\\y=\frac{-19}{10}\Rightarrow x=\frac{-57}{10}\end{matrix}\right.\) (thỏa mãn)

Vậy HPT có 4 cặp nghiệm (x,y)là\(\left(\frac{1-3\sqrt{17}}{4};\frac{-1+3\sqrt{17}}{4}\right);\)\(\left(\frac{1+3\sqrt{17}}{4};\frac{-1-3\sqrt{17}}{4}\right)\);(3;1);

\(\left(\frac{-57}{10};\frac{-19}{10}\right)\)

21 tháng 10 2021

Tham khảo

https://hoc24.vn/cau-hoi/leftbeginmatrixxy3y2-x4y72xyy2-2x-2y10endmatrixright.263310213403

NV
9 tháng 11 2019

\(x^2+2xy+y^2+2x+2y=8\)

\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)-8=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+y+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x+y=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=2-x\\y=-4-x\end{matrix}\right.\) thay vào pt ban đầu:

\(\left[{}\begin{matrix}x+3\left(2-x\right)=2018\\x+3\left(-4-x\right)=2018\end{matrix}\right.\)

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)