Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\)(nhân 2 vế của pt thứ nhất của hệ với 2)
Cộng theo vế 2 pt trên: \(x^2y^3+4xy^2-5y=0\)
\(\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\x^2y^2+4xy-5=0\end{matrix}\right.\)
+)Với y = 0, thay vào pt đầu của hệ ban đầu ta được: \(x.0^2+2x-4.0=-1\Leftrightarrow x=-\frac{1}{2}\)
Ta được 1 bộ nghiệm: \(\left(x;y\right)=\left(-\frac{1}{2};0\right)\)
+)Với\(x^2y^2+4xy-5=0\Rightarrow\left[{}\begin{matrix}xy=1\\xy=-5\end{matrix}\right.\)
Từ đây ta thấy ngay x, y khác 0.(nếu x hoặc y = 0=> xy = 0 khác 1;-5, loại)
Tiếp tục xét 2 TH:
xy = 1 suy ra \(x=\frac{1}{y}\). Thay vào pt đầu của hệ ban đầu ta được:\(\frac{2}{y}-3y=-1\Leftrightarrow2-3y^2=-y\Leftrightarrow3y^2-y-2=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\frac{2}{3}\end{matrix}\right.\)
Với y =1=> x = 1. với y=-2/3 suy ra x = -3/2
Ta được thêm 2 bộ nghiệm: \(\left(x;y\right)=\left(-\frac{3}{2};-\frac{2}{3}\right)\text{ và }\left(1;1\right)\)
Chị thứ xét tiếp xy =5 xem sao? Em ko chắc đâu nhé! Mới làm quen hệ pt thôi ak.
\(hpt\Leftrightarrow\left\{{}\begin{matrix}2xy^2+4x-8y=-2\\x^2y^3+2xy^2-4x+3y=2\end{matrix}\right.\Rightarrow x^2y^3+4xy^2-5y=0\Leftrightarrow y\left(x^2y^2+4xy-5\right)=0\Leftrightarrow y\left(xy-1\right)\left(xy+5\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\xy-1=0\\xy+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\xy=1\\xy=-5\end{matrix}\right.\)
\(+,y=0\Rightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}.\text{thử lại ta thấy thỏa mãn}\)
\(+,xy=1\Rightarrow\left\{{}\begin{matrix}y+2x-4y=-1\\y+2y-4x+3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-1\\6y-4x=2\end{matrix}\right.\Leftrightarrow2x=3y-1\Leftrightarrow x=\frac{3y-1}{2};xy=1\Rightarrow3y^2-y=2\Leftrightarrow y^2-\frac{1}{6}.2.y=\frac{2}{3}\Leftrightarrow\left(y-\frac{1}{6}\right)^2=\frac{25}{36}\Leftrightarrow.......\)
\(+,xy=5.\text{giải tương tự trường hợp 2}\)
Tham khảo
https://hoc24.vn/cau-hoi/leftbeginmatrixxy3y2-x4y72xyy2-2x-2y10endmatrixright.263310213403