K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)

Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

                   \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)

9 tháng 8 2015

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

5 tháng 6 2018

Ta có M=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)=4026\)

^_^

27 tháng 12 2015

a = 2;b= (-2);c= 3

Thay : a+b+c=2+(-2)+3

                 .     =[2+(-2)]+3

                       =0+3=3

B)vì a và b là 2 số đối nhau nên ta có :

a =2;b= (-2) và là 2số đối nhau vì

|-2|=2

26 tháng 1 2022

\(M=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)

\(M\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{ab+bc+ca}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)

\(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow M\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}=9+\dfrac{7.3}{\left(a+b+c\right)^2}=9+21=30\)

\(Min_M=30\Leftrightarrow a=b=c=\dfrac{1}{3}\)

26 tháng 1 2022

Áp dụng BĐT Svacxo

\(m\text{≥}\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\)

\(=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)

≥ \(\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)\(+\dfrac{7}{ab+bc+ca}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)

CM BĐT: \(a^2+b^2+c^2\text{≥}ab+bc+ca\)

⇔ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) (luôn đúng)

⇒ \(\left(a+b+c\right)^2\text{≥}3\left(ab+bc+ca\right)\)

⇒ \(\dfrac{\left(a+b+c\right)^2}{3}\text{≥}ab+bc+ca\)

⇒ \(m\text{≥}\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=9+21=30\) 

(vì a+b+c=1)

Vậy...