Cho \(\Delta ABC\)có \(\widehat{B}=80^o;\widehat{C}=40^o.\)Tia phân giác của \(\widehat{ACB}\)và tia phân giác của góc ngoài ABx cắt nhau ở I
Chứng Minh: \(\widehat{BAC}=2\widehat{BIC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C 80 I ? 10 30
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
Vì ΔABC ∽ ΔDEF \( \Rightarrow \widehat A = \widehat D{,^{}}\widehat B = \widehat E{,^{}}\widehat C = \widehat F\)
Mà \(\widehat A = {60^o} \Rightarrow \widehat D = {60^o}\)
\(\widehat E = {80^o} \Rightarrow \widehat B = {80^o}\)
Có \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = \widehat F = {180^o} - {60^o} - {80^o} = {40^o}\)
Hình bn tự vẽ nhé !
do ΔABC cân tại A ⇒ góc ABC =góc ACB
⇒góc ACB =800 ( vì góc ABC = 800 )
ta có : góc BAC = 1800 - ( ABC + ACB )
⇒ BAC =1800 - ( 800 + 800 )
⇒BAC =1800 - 1600
⇒BAC =200
lại có : BAI + CAI =BAC = 200
hay BAI + 100 =200
⇒ BAI = 100
⇒BAI =CAI (=100)
xét ΔABI và ΔACI có :
AB =AC ( ΔABC cân tại A )
BAI =CAI ( CM trên )
AI : chung
⇒ ΔABI = ΔACI ( c.g.c )
⇒ AIB = AIC (cặp góc tương ứng )
Xét ΔAIC ta có :
IAC +ACI +CIA = 1800 (tính chất tổng 3 góc của Δ )
hay 100 + 300 +CIA =1800
⇒CIA =1400
mà CIA = BIA ( CM trên )
⇒BIA = 1400
Vậy góc BIA =1400
Chúc bn hk tốt !
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
Do \(\Delta ABC = \Delta DEF\) nên \(\widehat B = \widehat E = {80^o}\); \(\widehat D = \widehat A = {60^o}\); \(\widehat C = \widehat F\) ( các góc tương ứng)
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 60^\circ + 80^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ - 60^\circ - 80^\circ = 40^\circ \end{array}\)
Do đó \(\widehat F = 40^\circ \)
Vậy \(\widehat B = {80^o}; \widehat D ={60^o}; \widehat C = \widehat F= 40^\circ \).
a) ΔABC có:
\(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 180o hay 100o + \(\widehat{B}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{B}\) + \(\widehat{C}\) = 180o - 100o = 80o
Ta có: \(\widehat{B}\) + \(\widehat{C}\) = 80o(cm trên) ; \(\widehat{B}\) - \(\widehat{C}\) = 50o (gt)
\(\Rightarrow\) \(\widehat{B}\) = (80o + 50o ) : 2 = 65o
\(\widehat{C}\) = (80o - 50o) : 2 = 15o
b) ΔABC có:
\(\widehat{B}\) + \(\widehat{A}\) + \(\widehat{C}\) = 180o hay 80o + \(\widehat{A}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{A}\) + \(\widehat{C}\) = 180o - 80o = 100o
Ta có: 3 . \(\widehat{A}\) = 2 . \(\widehat{C}\) => \(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\) = \(\frac{\widehat{A}+\widehat{C}}{2+3}\) = \(\frac{100}{5}\) = 20
\(\Rightarrow\) \(\begin{cases}\widehat{A}=40^o\\\widehat{C}=60^o\end{cases}\)