Tính : 1/100.99 - 1/99.98 - 1/98.99 ... - 1/3.2 - 1/ 2.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à mình nhầm có phải thế này không
1/100.99 - 1/99.98 - 1/98.97 -...- 1/3.2 - 1/2.1
=-(1/100.99 + 1/99.98 + 1/98.97 +...+ 1/3.2 + 1/2.1)
=-(1/2.1+1/3.2 +...+1/98.97+ 1/99.98 +1/100.99 )
=-(1/1.2+1/2.3+1/3.4+...+1/97.98+ 1/98.99 +1/99.100)
=-(1/1-1/2+1/2-1/3+1/3......-1/98+1/98-1/99+1/99-1/100)
=-(1/1-1/100)=-99/100
1/100-1/100.99-1/99.98-.....1/3.2-1/2.1
= 1/100-(1/100.99+1/99.98+.....+1/3.2+1/2.1)
=1/100-(1/1-1/2+1/2-1/3+...+1/98-1/99+1/99-1/100)
=1/100-(1/1-1/100)
=1/100-99/100
=-98/100
=-49/50
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{97.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\frac{1}{100}-C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{100}-C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{100}-C=1-\frac{1}{100}\)
\(C=C=\frac{1}{50}-1=-\frac{49}{50}\)
C=1/100-(1/100.99+1/99.98+...+1/3.2+1/2.1)
=1/100-(1-1/2+1/2_1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-99/100
=1/100 chọn cho mình nha!
\(C=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
\(C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-49}{50}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{2.1}\)
=\(-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
=\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
=\(-\left(1-\frac{1}{100}\right)\)
=\(\frac{-99}{100}\)
A=1/100.99 - 1/99.98 - 1/98.97 -...- 1/3.2 - 1/2.1
A= - (1/100.99 + 1/99.98 + 1/98.97 +...+ 1/3.2 + 1/2.1)
A= - (1/2.1+1/3.2 +...+1/98.97+ 1/99.98 +1/100.99 )
A= - (1/1.2+1/2.3+1/3.4+...+1/97.98+ 1/98.99 +1/99.100)
A= - (1/1-1/2+1/2-1/3+1/3......-1/98+1/98-1/99+1/99-1/100)
A= - (1/1-1/100)
A= - 99/100