tìm x biết l x-3 l = l x+7l
các bn giải chính xác giúp mình vs ạ , cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ix-7I+24=24-x+(-24)+x+40
Ix-7I+24=24+(-24)+40+(-x+x)
Ix-7I+24=40
Ix-7I=40-24
Ix-7I=16
x-7=16 hoặc x-7=-16
x=16+7 x=-16+7
x=23 x=-9
Vậy x=23 hoặc x=-9
Ix-7I+24=24-x+(-24)+x+40
Ix-7I+24=24+(-24)+40+(-x+x)
Ix-7I+24=40
Ix-7I=40-24
Ix-7I=16
x-7=16 hoặc x-7=-16
x=16+7 x=-16+7
x=23 x=-9
Vậy x=23 hoặc x=-9
Bài này có 2 cách giải nhưng mk khuyên bạn nên làm cách thứ 2, cách 1 chỉ đúng với một số bài toán, một số bài khác thì không sai nhưng thiếu giá trị của x. Cách thứ 2 thì có thể áp dụng với tất cả bài toán nha bạn :)
* Cách 1 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
Vì \(\left|x-5\right|\ge0\) nên \(x+3\ge0\)\(\Leftrightarrow\)\(x\ge-3\)
\(PT\)\(\Leftrightarrow\)\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
Vậy không có x thoả mãn đề bài ( thật sự là có nhưng cách này không tìm được x )
* Cách 2 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
+) Nếu \(x-5\ge0\)\(\Leftrightarrow\)\(x\ge5\) ta có :
\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
+) Nếu \(x-5< 0\)\(\Leftrightarrow\)\(x< 5\) ta có :
\(-\left(x-5\right)=x+3\)
\(\Leftrightarrow\)\(-x+5=x+3\)
\(\Leftrightarrow\)\(x+x=5-3\)
\(\Leftrightarrow\)\(2x=2\)
\(\Leftrightarrow\)\(x=\frac{2}{2}\)
\(\Leftrightarrow\)\(x=1\) ( thoả mãn \(x< 5\) )
Vậy \(x=1\)
Chúc bạn học tốt ~
ta có : 124-5./x-7/ lon nhất => 5./x-7/ nhỏ nhất=> /x-7/ nho nhat
lai co :/x-7/ >=0 => /x-7/min=0
dau"=" xay ra khi /x-7/ =0 => x-7 =0 => x=7
=>(2x-1)^2=24^2
=>2x-1=24 hoặc 2x-1=-24
=>x=-23/2 hoặc x=25/2
4. ( 3x+3 + 3x+1 ) = 3240
3x+3 + 3x+1 = 810
3x . 33 + 3x . 3= 810
3x. 30=810
3x = 27
3x = 33
x=3
vậy x =3
4(3𝑥+3+3𝑥+1)=3240
4(3x+{\color{#c92786}{3}}+3x+{\color{#c92786}{1}})=32404(3x+3+3x+1)=3240
4(3𝑥+4+3𝑥)=3240
Đáp án
𝑥=403/3
\(B=\left(x-8x-3\right)\)
\(B=\left(x^2-2x4-16\right)+13\)
\(-B=\left(x^2+2x4+16\right)-13\)
\(-B=\left(x+4\right)^2-13\ge-13\)
\(B=-\left(x+4\right)^2+13\le13\)
Dấu "=" xảy ra khi và chỉ khi \(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(x+4^2\right)=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy GTLN của B là 13 khi và chỉ khi x=-4
Lời giải:
$x(y-3)=y+7=(y-3)+10$
$\Rightarrow x(y-3)-(y-3)=10$
$\Rightarrow (x-1)(y-3)=10$
Với $x,y$ là số nguyên thì $x-1, y-3$ cũng là số nguyên. Do đó ta có bảng sau:
Theo đầu bài ta chia như sau:
x^4 - x^3 + 6 * x^2 - x + a x^2 - x + 5 x^2 x^4 - x^3 + 5 * x^2 x^2 - x + a
Theo đầu bài suy ra: x^2 - x + a chia hết cho x^2 - x + 5 nên a = 5
|x-3|=|x+7|
=>\(\left[{}\begin{matrix}x+7=x-3\\x+7=-x+3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}7=-3\left(loại\right)\\x+7=-x+3\end{matrix}\right.\)
=>x+7=-x+3
=>x+x=3-7
=>2x=-4
=>x=-2
x - 3 = x + 7
Chuyển vế đổi dấu:
x + x = 3 - 7
2x = -4
x = -4 : 2
x = -2
(Không biết cách làm này có đúng không tại mới làm lần đầu)