K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\left(x+y\right)^4}{8}\)(bđt Cauchy - Schwarz)

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

24 tháng 1 2019

Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)

Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)

\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).

Dấu "=" xảy ra <=> x=y=1/2.

24 tháng 12 2017
ghhjkkkk
9 tháng 9 2020

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

9 tháng 9 2020

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

NV
21 tháng 1 2024

 

Chứng minh bằng biến đổi tương đương:

\(x^8+y^8\ge x^2y^2\left(x^4+y^4\right)\)

\(\Leftrightarrow x^8-x^6y^2+y^8-x^2y^6\ge0\)

\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left[\left(x^2\right)^3-\left(y^2\right)^3\right]\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\) (luôn đúng với mọi x;y)

Vậy BĐT đã cho được chứng minh.

3 tháng 6 2019

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

3 tháng 6 2019

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!

4 tháng 8 2018

Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!

Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:

\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)

Nhân hai vế với số dương xy, ta được:

\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:

\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)

\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)

\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)

Do : \(4A\le9\)nên \(A< \frac{9}{4}\)