chứng minh rằng 3 999 - 3998 chia hết cho 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)
Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)
Vậy...
b)
\(81^7-27^9-9^{13}\\
=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\
=3^{28}-3^{27}-3^{26}\\
=3^{24}.\left(3^4-3^3-3^2\right)\\
=3^{24}.\left(81-27-9\right)\\
=3^{24}.45\)
Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)
Vậy...
A=7+7^3+7^5+..............+7^999
=[7+7^3]+[7^5+7^7]+..............+[7^997+7^999]
=7[1+7^2]+7^5[1+7^2]+..............+7^997[1+7^2]
=7[1+49]+7^5[1+49]+................7^997[1+49]
=7*50+7^5*50+...................+7^997*50
=350+7^4*7*50+.................+7^996*7*50
=350+7^4*350+................+7^996*350
=350[1+7^4+................+7^996]
vì 350 chia hết cho 35 nên A chia hết cho 35
\(_{^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }\veebar\circledcircℕ^∗\Phi}\)
Bà1
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956.
A = 1111...1 ( gồm 81 chữ số 1 )
=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )
Mặt khác ta có :
1 + 1 + ... + 1 = 1 . 81 = 81
Ta lại có :
81 = 92 chia hết 9
=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81. đó nha
A = 1111...1 ( gồm 81 chữ số 1 )
=> 1111...1 cũng chia hết 9 ( gồm 81 chữ số 1 )
Mặt khác ta có :1 + 1 + ... + 1 = 1 . 81 = 81
Ta có tiếp :
81 = 92 chia hết 9
=> 1111...1 ( gồm 81 chữ số 1 ) chia hết cho 81.
1111...1 81 so 1
chia thanh 9 phan
1111...1 9 so 1
111...1 : 9 so 1 khi chia cho 9 = mot so la A
111..11chia het 9 vi tong 9 so 1 chia het cho 9
vay khi dat vao phep tinh ta co
11111...1111 (81 so 1) : 9
= AAAA...AA 9soA
9 so A cung chia dc cho 9
suy ra 1111...1111 chia het cho 9x9=81 (DPCM)
1111...1 chia hết 81
=> 1111..1
81 chữ số 1
=> 1111...1 chia hết cho 9
=> ( 1111...1 ) chia hết cho 9 ; tổng là 81
vậy 1111...1 chia hết cho 81
Số đã cho được viết là N = 111...11 (81 chữ số 1)
\(N=10^{80}+10^{79}+...+10^1+10^0\)
\(\Rightarrow10N=10^{81}+10^{80}+...+10^2+10^1\)
\(\Rightarrow9N=10^{81}-1\)
\(\Rightarrow N=\dfrac{10^{81}-1}{9}\)
Ta chứng minh \(\dfrac{10^{81}-1}{9}⋮81=3^4\) hay \(10^{81}-1⋮3^6\)
Kí hiệu \(v_p\left(n\right)\) là số mũ đúng của số nguyên tố p trong phân tích tiêu chuẩn của n.
Sử dụng định lý LTE, ta có:
\(v_3\left(10^{81}-1\right)=v_3\left(10-1\right)+v_3\left(81\right)\) \(=2+4=6\)
Do đó \(10^{81}-1⋮3^6\), ta có đpcm.
(Bạn có thể tìm hiểu thêm về định lý LTE trên mạng nhưng bạn sẽ không được dùng nó vào chương trình lớp 6 đâu. Bạn có thể cm điều này bằng cách phân tích \(10^{81}-1\) thành tích của các số nhưng sẽ hơi lâu.)
Lời giải:
Ta có:
\(\underbrace{111....1}_{81}=\underbrace{11...1}_{9}\times 10^{72}+\underbrace{11...1}_{9}\times 10^{63}+\underbrace{111...1}_{9}\times 10^{54}+....+\underbrace{11...1}_{9}\times 10^0\)
\(=\underbrace{111....1}_{9}(10^{72}+10^{63}+...+10^0)\)
\(=\underbrace{111...1}_{9}\times 1\underbrace{0...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\)
Ta thấy thừa số thứ nhất chia hết cho 9 (do tổng các chữ số bằng 9). Thừa số thứ 2 cũng chia hết cho 9 (do tổng các chữ số chia hết cho 9)
Do đó tích 2 thừa số trên chia hết cho $9.9=81$
Ta có điều phải chứng minh.