a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+1=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)
tương tự \(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b\right)\left(c+a\right)\left(b+c\right)=a^2b+b^2a+c^2a+a^2c+b^2c+c^2b+2abc\)
\(\Rightarrow\)VT=\(a^2b+b^2a+b^2c+c^2b+c^2a+a^2c+3abc\) =\(ab\left(a+b\right)+bc\left(a+b\right)+ca\left(a+b\right)+c\left(ab+bc+ca\right)\)=a+b+c
ta có (a+b+c)^2>=3(ab+bc+ca)=3 nên a+b+c>=căn3(đccm)
\(x^4+\sqrt{x^2+3}=3\)
\(\Leftrightarrow x^4-1+\sqrt{x^2+3}-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1+\frac{1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)vì \(x^2+1+\frac{1}{\sqrt{x^2+3}+2}>0\)
\(\Leftrightarrow\int^{x=1}_{x=-1}\)
\(a+b+c+ab+ac+bc=6abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x;y;z>0\right)\)
Ta được: \(x+y+z+xy+xz+yz=6\)
Ta đi chứng minh: \(x^2+y^2+z^2\ge3\)
Có: \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)(Cô-si)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Dấu "=" xảy ra <=> x=y=z=1
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)(Cô-si)
\(\Rightarrow2x^2+2y^2+2z^2\ge2\left(xy+xz+yz\right)\)(2)
Dấu "=" xảy ra <=> x=y=z
cộng vế với vế của (1) và (2)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra <=> x=y=z=1<=>a=b=c=1
Nhớ tick nhé
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(3=1.3=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3}\) (1)
Lại có: \(\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\) .Cộng các bất đẳng thức theo vế được: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow ab+bc+ac\le1\) (2)
Cộng (1) và (2) theo vế ta có điều phải chứng minh.
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{ac+bc+c^2+ab}}=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\)
\(tt\Rightarrow2\text{ lần biểu thức}=2\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+2\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+2\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
\(\le\frac{b}{b+a}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+b}\left(\sqrt{ab}\le\frac{a+b}{2}\right)=3\Rightarrow dpcm\)
1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 )
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi )
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi )
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Dấu " = " xảy ra khi a = b = c.
2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 )
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được :
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)]
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c)
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca.
BĐT cuối đúng nên => đpcm !
Dấu " = " xảy ra khi a = b = c.
3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4)
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 )
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi )
= 2.abc(a + b + c)
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc
Dấu " = " xảy ra khi a = b = c.
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)
\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)
\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)
\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương) (1)
(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))
Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\)) (2)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\)) (3)
Cộng các BĐT (1) , (2) , (3), ta được:
\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)
\(\le\frac{1}{2}\left(a+b+c\right)=1\)
Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))
Ta có:
\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)
Tương tự:
\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)
Khi đó:
\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)
\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)
\(=a+b+c=2\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)
>= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)
Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)
=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM
Dấu "=" xảy ra <=> a=b=c=1/3