Cho tam giác ABC có BC = 2 AB gọi E F lần lượt là trung điểm của BC AD.
Chứng minh tứ giác abef là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CE/CA=CD/CB
nên ED//AB và ED=AB/2
=>AEDB là hình thang
mà góc EAB=90 độ
nênAEDB là hình thang vuông
b: Xét tứ giác ABKC có
D là trung điểm chung của AK và BC
góc BAC=90 độ
Do đó: ABKC là hình chữ nhật
Sửa đề: BC=2AB
a: \(BE=EC=\dfrac{BC}{2}\)
\(AF=FD=\dfrac{AD}{2}\)
mà BC=AD
nên BE=EC=AF=FD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
mà BE=BA(=1/2BC)
nên ABEF là hình thoi
b: Xét ΔIFA có
FB là đường trung tuyến
\(FB=\dfrac{IA}{2}\)
Do đó: ΔIFA vuông tại F
=>IF\(\perp\) AD
mà AD//BC
nên \(IF\perp BC\)
c: Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
=>BC cắt ID tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của ID
=>I,E,D thẳng hàng
a: Xét ΔABC có
BE/BC=BD/BA
nên ED//AC và ED=AC/2
=>ED//AF và ED=AF
=>ADEF là hình bình hành
mà góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác BMAE có
D là trung điểm chung của BA vàME
EA=EB
Do đó: BMAE là hình thoi
c: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*3*4=6(cm2)
a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)DF//AC hay DF//EC(1)
Lại có, xét \(\Delta ABC\): \(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) ED//BC hay ED//CF(2)
Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành
b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)
Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) EF//AB
Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)
Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)
\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE
c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)
Mà EA=DF (EDFA là hình chữ nhật)
\(\Rightarrow EK=DF\)
Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AB và DE=AB/2
Xét tứ giác ADEB có DE//AB
nên ADEB là hình thang
mà \(\widehat{DAB}=90^0\)
nên ADEB là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi