Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AB và DE=AB/2
Xét tứ giác ADEB có DE//AB
nên ADEB là hình thang
mà \(\widehat{DAB}=90^0\)
nên ADEB là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
a) Xét tứ giác ADEF có : góc A = 90 độ ( tam giác ABC vuông tại A)
góc EFA = 90 độ ( EF vuông góc với AB tại F)
góc EDA = 90 ( ED vuông góc với AC tại D)
suy ra : ADEF là hcn
b) Xét tam giác ABC có : BE = EC ( E là trung điểm của BC )
ED song song với AB ( EFAD là hcn )
suy ra : AD = DC
Xét tứ giác AECK có : ED = DK ( E đối xứng với K qua D )
AD = DC (cmt)
suy ra : tứ giác AECK là hình bình hành
mà ED vuông góc với AC
suy ra : hbh AECK là hình thoi
B D V N M K E C
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.