K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

mình rảnh nên mình vẽ thôi :V A B C D M E

a. xét tam giác ABC, có:

    M là trung điểm AB (giả thuyết)

    D là trung điểm BC (AD là đường trung tuyến tam giác ABC)

=> MD là đường trung bình tam giác ABC

=> MD // AC

mà E thuộc MD (E là điểm đối xứng của D qua M)

=> DE // AC (1)

ta có: MD là đường trung bình tam giác ABC (chứng minh trên)

=> MD = \(\frac{1}{2}\)AC

mà M là trung điểm cua ED (E là điểm đối xứng của D qua M)

=> ED = AC (2)

từ (1),(2):

=> AEDC là hình bình hành (tứ giác có 1 cặp cạnh đối vừa song song, vừa bằng nhau) (chỗ này đề sai nên mình sửa lại là AEDC)

b. xét tứ giác AEBD, có:

 M là trung điểm ED (E là điểm đối xúng của D qua M)

 M là trung điểm AB (giả thuyết)

 ED cắt AB tại M

=> AEBD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường) 

xét tam giác ABC vuông A, có:

AD là đường trung tuyến (giả thuyết)

=> AD = BD

mà AEBD là hình bình hành (chứng minh trên)

=> AEBD là hình thoi (hình bình hành có 2 cặp cạnh kề bằng nhau)

C. ta có: D là trung điểm của BC (AD là đường trung tuyến)

=> BD = \(\frac{1}{2}\)BC

=> BD= \(\frac{5}{2}\)

=> BD= 2.5 cm

ta có: AEBD là hình thoi (chứng minh trên)

=> P(chu vi)AEBD = 2.5x4

                           = 10 cm  

7 tháng 11 2017
phụ với
18 tháng 1 2023

Bạn tự vẽ hình nhé.

a. 

Xét tứ giác AEBD có:

AH = HB (H là trung điểm của AB)

HE = HD (vì E và D đối xứng với nhau qua H)

=> AEBD là hình bình hành.

Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)

Từ trên suy ra: AEBD là hình chữ nhật.

b.

Vì AEBD là hình chữ nhật nên ta có:

- AE // BD và AE = BD (1)

mà: BC // AE và BD = DC (2)

Từ (1), (2) suy ra: ACDE là hình bình hành.

c.

có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)

d.

Để AEBD là hình vuông thì AD = BD

=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.

Mà AB = AC

=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.

10 tháng 12 2016

Giải:

a) Ta có AM=MB và EM=MD ( đối xứng ) =>AEBD là hình bình hành

mà góc D = 90 (độ) => AEBD là hình chữ nhật

b) từ câu a =>AE//DC ; mà DC=DB (AD là đường cao của tam giác cân ABC =>là AD cũng đường trung tuyến) 

=>ACDE là hình bình hành

c) để tứ giác AEBD là hình vuông thì:

như câu a thì AEBD là hình chữ nhật =>điều hiện là:AD=BD mà AD=BD =>tam giác ABC phải là tam giác vuông cân

d) S tam giác ABC= AD.BD/2 = AD.BD    1

   S hình chữ nhật ABDE= AD.BD             2

​Từ 1 và 2 =>S tam giác ABC = S hình chữ nhật ABDE (đpcm)


A E B D C M

15 tháng 11 2021

a, Vì N là trung điểm BD và AC nên ABCD là hbh

Vì M là trung điểm CE và AB nên AEBC là hbh

b, Vì ABCD và AEBC là hbh nên \(\left\{{}\begin{matrix}AE//BC;AE=BC\\AD//BC;AD=BC\end{matrix}\right.\Rightarrow AE\equiv AD;AE=AD\)

Vậy E đx D qua A

6 tháng 1 2022

a) Xét tứ giác AEBM:

+ D là trung điểm của AB (gt).

+ D là trung điểm của ME (M là điểm đối xứng với E qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).

Mà BE = EC (E là trung điểm của BC).

\(\Rightarrow\) AM = EC.

Xét tứ giác ACEM:

+ AM = EC (cmt).

+ AM // EC (AM // BE).

\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).

b) Xét tam giác ABC cân tại A:

AE là đường trung tuyến (E là trung điểm của BC).

\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).

Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).

\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).

c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).

\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).

\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)

6 tháng 1 2022

a,

xét tam giác ABC có đường t/b DE:

=>DE//AC và DE=\(\dfrac{1}{2}\) AC

M là điểm đối xứng của DE:

=>DE+DM=AC

từ trên suy ra:

EM=AC và EM//AC

vậy ACEM là hình bình hành.

b, 

Xét tam giác ABC là tam giác cân :

=>AB=AC

mà AC = ME

nên: AB =ME (1)

lại có: AM=MB , MD=DE(2)

từ (1) và (2) suy ra:

AEBM là hình chữ nhật.

c,

Xét tam giác ABC có BE=EC suy ra:

BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)

vì AEBM là hình chữ nhật nên:

góc AEB = 90\(^o\)<=> AEB là tam giác vuông

vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)

 

 

20 tháng 12 2021

a: Xét tứ giác AEMC có

ME//AC

ME=AC

Do đó: AEMC là hình bình hành

1 tháng 11 2022

.

 

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

28 tháng 12 2020

a) Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Vì D đối xứng với M qua AB(gt)

nên AB là đường trung trực của DM

⇔AB vuông góc với DM tại trung điểm của DM

mà AB cắt DM tại H(gt)

nên H là trung điểm của DM và MH⊥AB tại H

Ta có: MH⊥AB(cmt)

AC⊥AB(ΔABC vuông tại A)

Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)

hay MD//AC

Ta có: H là trung điểm của MD(cmt)

nên \(MH=\dfrac{1}{2}\cdot MD\)(1)

Xét ΔABC có 

M là trung điểm của BC(gt)

MH//AC(cmt)

Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

H là trung điểm của AB(cmt)

Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra AC=MD

Xét tứ giác ACMD có 

AC//MD(cmt)

AC=MD(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K