M=\(\frac{5\sqrt{x}+27}{2\sqrt{x}-3}\)
a ) Tìm x để M có gtri nguyên
b ) Tìm GTLN cua M có gtri nguyên
c) Tìm GTNN cua M có gtri nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
a: \(B=3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}=3\sqrt{x-3}\)
b: B=7 thì \(\sqrt{x-3}=\dfrac{7}{3}\)
=>x-3=49/9
hay x=76/9
\(M=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{\left(2x-3\right)\left(5x+4\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)
=> M nguyên <=> 5x+4 nguyên và 7/2x-3 nguyên <=> x nguyên và 2x-3 thuộc Ư(7) <=> 2x-3 thuộc (+-1; +-7)
2x-3 | 1 | -1 | 7 | -7 |
x | 2(t/m đk) | 1(t/m đk) | 5(t/mđk) | -2(t/m đk) |
=> M nguyên <=> x thuộc (-2;1;2;5)
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
1) \(Q=-x\) khi:
\(\dfrac{x-3}{x+1}=-x\)
\(\Leftrightarrow x-3=-x\left(x+1\right)\)
\(\Leftrightarrow x-3=-x^2-x\)
\(\Leftrightarrow x-3+x^2+x\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2) \(Q< 1\) khi:
\(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow x-3< x+1\)
\(\Leftrightarrow x-x< 1+3\)
\(\Leftrightarrow0< 4\) (luôn đúng)
Vậy \(Q< 0\) với mọi x
3) \(Q=m\) khi:
\(\dfrac{x-3}{x+1}=m\)
\(\Leftrightarrow x-3=m\left(x+1\right)\)
\(\Leftrightarrow x-3=mx+m\)
\(\Leftrightarrow x-mx=m+3\)
\(\Leftrightarrow x\left(1-m\right)=m+3\)
\(\Leftrightarrow1-m\ne0\)
\(\Leftrightarrow m\ne1\)