Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ge-1\end{matrix}\right.\)
2) \(A=2^2+\left(3\sqrt{2}\right)^2+2.2.3\sqrt{2}-12\sqrt{2}=4+18+12\sqrt{2}-12\sqrt{2}=22\)\(B=\sqrt{4+3+4\sqrt{3}-\sqrt{3}=\sqrt{7+3\sqrt{3}}}\)
3) a) \(A=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)b) Ta có :
\(x=3+2\sqrt{2}=\left(\sqrt{2}\right)^2+2.1.\sqrt{2}+1^2=\left(\sqrt{2}+1\right)^2\)Thay x vào A ta đc : \(A=\sqrt{x}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1=\sqrt{2}+1-1=\sqrt{2}\)4) a)
\(\sqrt{9x-27}+\sqrt{x-3}-\dfrac{1}{2}\sqrt{4x-12}=7\Leftrightarrow3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}.2.\sqrt{x-3}=7\Leftrightarrow3\sqrt{x-3}=7\Leftrightarrow x-3=\dfrac{49}{9}\Leftrightarrow x=\dfrac{76}{9}\)b)Đề chuyển thánh sinB=3/4 nha
Ta có: sin2B+cos2B=1=> cosB=\(\dfrac{\sqrt{7}}{4}\)
cosC=sinB=3/4
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
a, \(\frac{\sqrt{10}+\sqrt{6}}{\sqrt{30}+\sqrt{18}}=\frac{\sqrt{10}+\sqrt{6}}{\sqrt{10.3}+\sqrt{6.3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
b, Với a;b > 0
\(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}=\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}\)
c, Với x >= 0
\(\frac{4x+3\sqrt{x}-7}{4\sqrt{x}+7}=\frac{\left(\sqrt{x}-1\right)\left(4\sqrt{x}+7\right)}{4\sqrt{x}+7}=\sqrt{x}-1\)
d, Với x >= 0 ; x khác 14
\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
a) \(\frac{\sqrt{10}+\sqrt{6}}{\sqrt{30}+\sqrt{18}}=\frac{\sqrt{10}+\sqrt{6}}{\sqrt{3}\left(\sqrt{10}+\sqrt{6}\right)}=\frac{1}{\sqrt{3}}\)
b) \(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{a}}{\sqrt{b}}\)
c) \(\frac{4x+3\sqrt{x}-7}{4\sqrt{x}+7}=\frac{\left(\sqrt{x}-1\right)\left(4\sqrt{x}+7\right)}{\left(4\sqrt{x}+7\right)}=\sqrt{x}-1\)
d) \(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}=\frac{x+\sqrt{x}-4\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
Bài 1:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
b: \(P=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
c: Để \(P=\dfrac{1}{2}\) thì \(2\sqrt{x}-6=\sqrt{x}-2\)
hay x=16
Tớ làm nốt nè :3
\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)
\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)
\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)
\(\Leftrightarrow4x^2+4x-8x-8=0\)
\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)
\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)
\(\Leftrightarrow4\sqrt{x-1}=7\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)
\(\Leftrightarrow x=\dfrac{65}{16}\)
c. Sai đề.
Bài 2:
a: =>25x=35^2=1225
=>x=49
b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
=>x=-1
a: \(B=3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}=3\sqrt{x-3}\)
b: B=7 thì \(\sqrt{x-3}=\dfrac{7}{3}\)
=>x-3=49/9
hay x=76/9