K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

vì (2x-3).(x-1/4) <0

=> 2x-3 và x-1/4 khác dấu

=> \(\orbr{\begin{cases}\hept{\begin{cases}2x-3< 0\\x-\frac{1}{4}>0\end{cases}}\\\hept{\begin{cases}2x-3>0\\x-\frac{1}{4}< 0\end{cases}}\end{cases}}\)

+ Nếu \(\hept{\begin{cases}2x-3< 0\\x-\frac{1}{4}>0\end{cases}}\) => \(\hept{\begin{cases}2x< 3\\x>\frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x< \frac{3}{2}\\x>\frac{1}{4}\end{cases}}\) => \(\frac{1}{4}< x< \frac{3}{2}\)

+Nếu \(\hept{\begin{cases}2x-3>0\\x-\frac{1}{4}< 0\end{cases}}\)=> \(\hept{\begin{cases}2x>3\\x< \frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x>\frac{3}{2}\\x< \frac{1}{4}\end{cases}}\)(vô lý) => loại

Vậy \(\frac{1}{4}< x< \frac{3}{2}\)

10 tháng 6 2019

X=1 nha bạn. câu hỏi đòi giá trị nguyên nên Đ/S=1

11 tháng 9 2016

\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)

\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)

\(\Leftrightarrow1+2+3+4+..+x=15\)

\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)

\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)

Vậy x=5

Bài 2:

Bậc của đơn thức là 2+5+3=10

Bài 3:

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)

+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành

\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+)TH2: \(x< \frac{1}{4}\) thì pt trở thành

\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)

Vậy x={-9/4;11/4}

7 tháng 7 2016

1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)

\(-80< 84x+48< 49\)

\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\) 

\(\begin{cases}84x>-128\\84x< 1\end{cases}\)

\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)

\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)

 

7 tháng 7 2016

\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{32}{21}< x< \frac{1}{84}\)

\(-1^{11}_{21}< x< \frac{1}{84}\)

\(\Rightarrow x\in\left\{-1;0\right\}\)

Vậy x = 0

\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)

\(\frac{77}{16}< 2x< \frac{37}{6}\)

\(\frac{77}{32}< x< \frac{37}{12}\)

\(2^{13}_{32}< x< 3^1_{12}\)

=> x = 3

3 tháng 11 2015

vì x+y=4 nền (x+y)^2=4^2                                                                                                                                                                                            =x^2+ 2xy+y^2=16        ma  xy=5 nên 2xy=10  ta có x^2+y^2+10=16 ; x^2+y^2= 16-10                                                                                                                                                                                     x^2+y^2=6                                     kết quả mik là z đó nhưng k biết có đúng k bn ak

14 tháng 1 2017

câu 1 dễ bn tự làm nhé 

câu 2 nhận xét (x-2)^2 >=0 

=> 15-(x2)^2 >= 15 

dấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2 

câu 3 x-5 <0 

=> x < 5           (1)

3-x <0 

=> x>3               (2)

từ (1) và (2) => 3< x< 5 

=> x= 4

14 tháng 1 2017

câu 1: x=1

câu 2: vì \(^{\left(x-2\right)^2}\)\(\ge\)

=> 15-\(\left(x-2\right)^2\)\(\le\)

Dấu "=" xảy ra <=> x-2=0

                        <=> x=2

Câu 3:  x-5 < 0 => x<5

           và  3-x >0 =>x>3

=> 3<x<5

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

8 tháng 6 2015

(2x + 3)(2x + 10) < 0

=> 2x+3 và 2x+10 trái dấu

mà 2x+10 > 2x+3

=> 2x +10 > 0 , 2x+3 < 0

=> 2x > -10 ; 2x  < -3

=> x >-5 , x <-3/2

=> -5 < x < -3/2 = -1,5

mà x \(\in\)Z => x \(\in\left\{-4;-3;-2\right\}\)

8 tháng 6 2015

(2x + 3)(2x + 10) < 0

<=> 2x + 3 và 2x + 10 trái dấu

Vì 2x + 3 < 2x + 10 nên ta chọn 2x + 3 âm và 2x + 10 dương.

Ta có : 2x + 3 < 0

=> 2x < -3

=> x < -2

 Lại có :  2x + 10 > 0

        => 2x > -10

         => x > -5

              Vậy -5 < x < -2 => x \(\in\) {-4 ; -3}

              Vậy x có 2 giá trị nguyên thỏa mãn.