Tìm các số a,b,c nguyên dương thỏa mãn: a3 + 3.a2 + 5 = 5b và a + 3 = 5c
giải giùm mình nhe các bạn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
Đặt S= | a1 + a2 | + |a2 + a3| + |a3 + a4| + .... + | a(n) + a1 |
Ta có: S - 2.(a1+a2+...+a(n))= [| a1 + a2 | -(a1+a2)]+ [|a2 + a3| -(a2+a3)]+ [ |a3 + a4|-(a3+a4)] + .... +[ | a(n) + a1 | -(a(n)+a1)]
Mặt khác ta dễ dàng CM được: |A| - A luôn là một số chẵn nên|a(i)+a(j)|-[a(i)+a(j)] là một số chẵn.
nên S - 2.(a1+a2+...+a(n)) là một số chẵn mà 2.(a1+a2+...+a(n)) là một số chẵn =>S là một số chẵn.
So sánh ta thấy S là một số chẵn mà 2015 là một số lẻ.
Vậy không có các số nguyên a(i) thỏa mãn: | a1 + a2 | + |a2 + a3| + |a3 + a4| + .... + | a(n) + a1 | = 2015
\(a^2+b^2=a^3+b^3=a^4+b^4\)
\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)
\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^2+b^2=a^3+b^3\)
\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)
\(\Rightarrow a+b=2\)