Cho hcn ABCD (AD<AB). Gọi O là giao điểm hai đường chéo. Kẻ đường thẳng d vuông góc với DB tại D. d cắt tia BC tại E
a, C/m tam giác DBE đồng dang với tam giác CDE
b, Kẻ CH vuông góc với DE tại H. C/m DC2=CH.DB
c, Gọi K là giao điểm của OE và HC. C/m K là trung điểm của HC
a: Xét ΔDBE vuông tại D và ΔCDE vuông tại C có
\(\widehat{DEB}\) chung
Do đó: ΔDBE~ΔCDE
b:
Ta có: CH\(\perp\)DE
DB\(\perp\)DE
Do đó: CH//DB
Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
\(\widehat{HCD}=\widehat{CDB}\)(hai góc so le trong, CH//DB)
Do đó: ΔHCD~ΔCDB
=>\(\dfrac{HC}{CD}=\dfrac{CD}{DB}\)
=>\(HC\cdot DB=CD^2\)
c: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của BD
=>OB=OD(1)
Xét ΔEOD có HK//OD
nên \(\dfrac{HK}{OD}=\dfrac{EK}{EO}\left(2\right)\)
Xét ΔEOB có KC//OB
nên \(\dfrac{KC}{OB}=\dfrac{EK}{EO}\left(3\right)\)
Từ (1),(2),(3) suy ra HK=KC
=>K là trung điểm của HC