K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

\(\widehat{FAH}\) chung

DO đó: ΔAFH~ΔADB

b: ΔAFH~ΔADB

=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)

=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)

Xét ΔAFD và ΔAHB có

\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)

\(\widehat{FAD}\) chung

Do đó: ΔAFD~ΔAHB

c: ΔAFD~ΔAHB

=>\(\widehat{ADF}=\widehat{ABH}\)

=>\(\widehat{ADF}=\widehat{ACH}\)

Xét ΔAEH vuông tại E và ΔADC vuông tại D có

\(\widehat{EAH}\) chung

DO đó: ΔAEH~ΔADC

=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)

=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)

Xét ΔAED và ΔAHC có

\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)

\(\widehat{EAD}\) chung

Do đó: ΔAED~ΔAHC

=>\(\widehat{ADE}=\widehat{ACH}\)

=>\(\widehat{FDA}=\widehat{EDA}\)

=>DA là phân giác của góc FDE

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

Sửa đề: Cho ΔDEF nhọn

a: Xét ΔDKF vuông tại K và ΔDIE vuông tại I có

\(\widehat{KDF}\) chung

Do đó: ΔDKF~ΔDIE

=>\(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)

=>\(DK\cdot DE=DI\cdot DF\)

b: ta có: \(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)

=>\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)

Xét ΔDKI và ΔDFE có

\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)

\(\widehat{KDI}\) chung

Do đó: ΔDKI~ΔDFE

c: Xét ΔFIE vuông tại I và ΔFHD vuông tại H có

\(\widehat{HFD}\) chung

Do đó: ΔFIE~ΔFHD

=>\(\dfrac{FI}{FH}=\dfrac{FE}{FD}\)

=>\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

Xét ΔFIH và ΔFED có

\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

\(\widehat{EFD}\) chung

Do đó: ΔFIH~ΔFED

=>\(\widehat{FIH}=\widehat{FED}\)

d:

Sửa đề: \(EK\cdot ED+FI\cdot FD=EF^2\)

Xét ΔEKF vuông tại K và ΔEHD vuông tại H có

góc KEF chung

Do đó: ΔEKF~ΔEHD

=>\(\dfrac{EK}{EH}=\dfrac{EF}{ED}\)

=>\(EK\cdot ED=EF\cdot EH\)

Ta có: \(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)

=>\(FI\cdot FD=FH\cdot FE\)

\(EK\cdot ED+FI\cdot FD\)

\(=EF\cdot EH+FH\cdot EF=EF^2\)

24 tháng 1

cảm ơn nha

 

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{CDH}+\widehat{CEH}=180^0\)

Do đó: CDHE là tứ giác nội tiếp

b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)

\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)

mà \(\widehat{BAD}=\widehat{FCB}\)

nên \(\widehat{FEB}=\widehat{BED}\)

hay EB là tia phân giác góc FED

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xet ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

30 tháng 3 2023

còn câu c nữa bạn.:((

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/2=CD/3=(BD+CD)/(2+3)=8/5=1,6

=>BD=3,2cm; CD=4,8cm

b: Xét ΔDEB và ΔDCA có

góc DEB=góc DCA

góc EDB=góc CDA

=>ΔDEB đồng dạng với ΔDCA

Xét ΔABE và ΔADC có

góc AEB=góc ACD

góc BAE=góc DAC

=>ΔABE đồng dạng với ΔADC

c: ΔABE đồng dạng với ΔADC

=>AB/AD=AE/AC

=>AB*AC=AD*AE

d: góc ACB=góc AEB

=>ABEC nội tiếp

=>góc ABE+góc ACE=180 độ

20 tháng 3 2018

a) Xét \(\Delta\)ABE  và \(\Delta\)ACF có

\(\widehat{A}\)là góc chung

\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))

=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)

=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)

=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Xét \(\Delta\)AEF và  \(\Delta\)ABC có

\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Và \(\widehat{A}\)góc chung

Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c)  (1)

b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)

=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)

=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

Xét \(\Delta\)DEC và \(\Delta\)ABC  có

 \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

\(\widehat{C}\)góc chung

=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c)  (2)

Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF

=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)

Mà \(\widehat{AEB}\)\(\widehat{CEB}\)\(90^O\)

=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)

Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)

=> EH là phân giác góc FED

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.