K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

=>(a+b)(c-a)=(a-b)(c+a)

=>\(ac-a^2+bc-ba=ac+a^2-bc-ab\)

=>\(-a^2+bc=a^2-bc\)

=>\(-2a^2=-2bc\)

=>\(a^2=bc\)

12 tháng 8 2024


\[
\frac{a+b}{a-b} = \frac{c+a}{c-a}
\]

Ta sẽ thực hiện phép nhân chéo:

\[
(a+b)(c-a) = (a-b)(c+a)
\]

Khai triển hai vế của phương trình:

- Vế trái: 

\[
(a+b)(c-a) = ac - a^2 + bc - ab
\]

- Vế phải:

\[
(a-b)(c+a) = ac + a^2 - bc - ab
\]

Từ đó ta có:

\[
ac - a^2 + bc - ab = ac + a^2 - bc - ab
\]

Giản lược hai vế:

\[
-a^2 + bc = a^2 - bc
\]

Chuyển các hạng tử về cùng một vế:

\[
-a^2 + bc - a^2 + bc = 0
\]

\[
-2a^2 + 2bc = 0
\]

Chia cả hai vế cho 2:

\[
-a^2 + bc = 0
\]

Chuyển \(-a^2\) qua vế phải:

\[
bc = a^2
\]

 

29 tháng 6 2016

a) Ta có: \(a+b+c=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(b+a+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

29 tháng 6 2016

b) Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)(chứng minh câu a)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

1 tháng 11 2016

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> (a + b).(c - a) = (c + a).(a - b)

=> (a + b).c - (a + b).a = (c + a).a - (c + a).b

=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b

=> b.c - a2 = a2 - b.c

=> b.c + b.c = a2 + a2

=> 2.b.c = 2.a2

=> b.c = a2 (đpcm)

1 tháng 11 2016

Cách 1:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)

Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:

\(a+b=k\left(a-b\right)\)\(c+a=k\left(c-a\right)\)

\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\)\(c\left(1+k\right)=a\left(-k-1\right)\)

\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\)\(\frac{c}{a}=\frac{k+1}{k-1}\)

Từ hai đẳng thức cuối ta được:

\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)

29 tháng 10 2023

14:

\(A=\sqrt{-4x^2+4x+7}\)

\(=\sqrt{-\left(4x^2-4x-7\right)}\)

\(=\sqrt{-\left(4x^2-4x+1-8\right)}\)

\(=\sqrt{-\left(2x-1\right)^2+8}< =\sqrt{8}=2\sqrt{2}\)

Dấu = xảy ra khi 2x-1=0

=>\(x=\dfrac{1}{2}\)

13:

\(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

=>\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}>=0\)

=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)>=0\)

=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)(luôn đúng)

Bài 1: 

\(\left(2x+3\right)^2-\left(2x+3\right)\left(4x-6\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3\right)^2-2\cdot\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3-2x+3\right)^2+xy\)

\(=xy+36=2\cdot\left(-1\right)+36=36-2=34\)

Bài 2: 

a: \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

b: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+2ab+b^2+2ac+c^2+2bc+a^2+ab+ac+a^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC ta có:

\({a^2} = {b^2} + {c^2} - 2bc.\cos A\)\( \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \(\sin A = \sqrt {1 - {{\cos }^2}A} \).

\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)}^2}}  = \sqrt {\frac{{{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}}}{{{{(2bc)}^2}}}} \)

\( \Leftrightarrow \sin A = \frac{1}{{2bc}}\sqrt {{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}} \)

Đặt \(M = \sqrt {{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}} \)

\(\begin{array}{l} \Leftrightarrow M = \sqrt {(2bc + {b^2} + {c^2} - {a^2})(2bc - {b^2} - {c^2} + {a^2})} \\ \Leftrightarrow M = \sqrt {\left[ {{{(b + c)}^2} - {a^2}} \right].\left[ {{a^2} - {{(b - c)}^2}} \right]} \\ \Leftrightarrow M = \sqrt {(b + c - a)(b + c + a)(a - b + c)(a + b - c)} \end{array}\)

Ta có: \(a + b + c = 2p\)\( \Rightarrow \left\{ \begin{array}{l}b + c - a = 2p - 2a = 2(p - a)\\a - b + c = 2p - 2b = 2(p - b)\\a + b - c = 2p - 2c = 2(p - c)\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow M = \sqrt {2(p - a).2p.2(p - b).2(p - c)} \\ \Leftrightarrow M = 4\sqrt {(p - a).p.(p - b).(p - c)} \\ \Rightarrow \sin A = \frac{1}{{2bc}}.4\sqrt {p(p - a)(p - b)(p - c)} \\ \Leftrightarrow \sin A = \frac{2}{{bc}}.\sqrt {p(p - a)(p - b)(p - c)} \end{array}\)

b) Ta có: \(S = \frac{1}{2}bc\sin A\)

Mà \(\sin A = \frac{2}{{bc}}\sqrt {p(p - a)(p - b)(p - c)} \)

\(\begin{array}{l} \Rightarrow S = \frac{1}{2}bc.\left( {\frac{2}{{bc}}\sqrt {p(p - a)(p - b)(p - c)} } \right)\\ \Leftrightarrow S = \sqrt {p(p - a)(p - b)(p - c)} .\end{array}\)

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

15 tháng 2 2022

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

14 tháng 12 2021

\(a,\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\\ \Leftrightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\\ \Leftrightarrow2bc=2a^2\Leftrightarrow a^2=bc\Leftrightarrow m=a^2-bc=0\)

\(b,\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\\ \Leftrightarrow\left\{{}\begin{matrix}abz-acy=0\\bcx-abz=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{z}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)