K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 8

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-1\)

\(\ge\left(a+b+c\right).3\sqrt[3]{ab.bc.ca}-1\)

\(=3\left(a+b+c\right)-1\)

\(=\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}\left(a+b+c\right)-1\)

\(\ge\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}.3\sqrt[3]{abc}-1\)

\(=\dfrac{7}{3}\left(a+b+c\right)+1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

14 tháng 8 2018

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

27 tháng 3 2018

Đáp án D

7 tháng 9 2017


10 tháng 8 2018

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)

Nhân hai vế của phương trình với \(a+b>0\) ta có:

\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:

\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)

\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)

\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)

14 tháng 5 2016

Ta có : 

\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)

Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :

\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\)  (2)

Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)

hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)

Chứng minh tương tự ta được :

                           \(a^{\log_bc}+b^{\log_ca}\ge2a\)

                           \(b^{\log_ca}+c^{\log_ab}\ge2b\)

\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)

hay : 

              \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\)  (*)

Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\)  (2*)

Từ (*) và (2*) ta có : 

                        \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)

đề hình như sai

 

ấn vào ô báo cáo

25 tháng 2 2022

Tối quá, ko thấy bài đâu 

HT

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

thank you very much