Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng do a < b nên \(\log_ab>1\)
Khi đó nếu xét cùng cơ số là b thì : \(\log_a\left(\log_ab\right)>\log_b\left(\log_ab\right)>0\)
Ta cũng có \(\log_ca< 1\) do a < c, suy ra \(0>\log_c\left(\log_ca\right)>\log_b\left(\log_ca\right)\)
Từ đó suy ra :
\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>\log_b\left(\log_ab.\log_bc.\log_ca\right)=0\)
Vì \(a,b>1\) và \(c\ge0\Rightarrow0< \log_ba\le\log_b\left(a+c\right)\)
\(\Rightarrow\frac{1}{\log_ba}\ge\frac{1}{\log_b\left(a+c\right)}\Leftrightarrow\log_ab\ge\log_{a+c}b\)
\(\Rightarrow\) điều phải chứng minh
Ta có :
\(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)
\(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)
Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)
Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\) (**)
Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)
Dấu "=" xảy ra khi c = 0 hoặc a = b
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
\(\sum_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}>=\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
\(\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}>=\dfrac{2\left(a+b+c\right)^2}{\sum2\sqrt{2+2ab}}>=\dfrac{3}{2}\)
\(\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}>=\dfrac{3}{2}\)
Cộng các BĐT trên, ta được ĐPCM
Ta có:
\(\Sigma_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\Sigma_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
Sử dụng BĐT Cauchy - Schwarz và AM - GM có:
\(\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{\Sigma2\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\dfrac{3}{2}\)
Tương tự: \(\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)
Cộng 2 BĐT ta được:
\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ca}}\ge3\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Vì \(a\ge1;b\ge1\) nên \(\ln a;\ln b\) và \(\ln\frac{a+b}{2}\) không âm. Ta có :
* \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\ln\sqrt{ab}\Leftrightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\) (1)
* \(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\) Áp dụng BĐT Cauchy
\(\Rightarrow2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a.\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay :
\(\ln a+\ln b\ge\frac{1}{2}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)
Ta có :
\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)
Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :
\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\) (2)
Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)
hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)
Chứng minh tương tự ta được :
\(a^{\log_bc}+b^{\log_ca}\ge2a\)
\(b^{\log_ca}+c^{\log_ab}\ge2b\)
\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)
hay :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\) (*)
Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\) (2*)
Từ (*) và (2*) ta có :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)