1/1+2+3 +1/1+2+3+4 +...+1/1+2+3+...+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
Dãy 1:
Giải:
Số hạng thứ 100 của dãy là:
2+(100-1).3=299
Tổng của dãy số trên là:
(299+2).100:2=15050
Vậy tổng của dãy 1 là 15050
Dãy 1 : 2 ,5 ,8,11
giải
đây là dãy số cách đều ..........
Số số hạng( số đầu - số cuối ) : khoảng cách +1 =
tổng của dãy: ( số đầu + số cuối ) x số số hạng : 2 =
số số hạng ( 101 - 1 ) : 1 + 1 = 101
tổng ( 101 + 1 ) . 101 : 2 = 5151
Bài giải:
Số số hạng của dãy số trên là :
(100 - 1) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số trên là :
(100 + 1 ) x 100 : 2 = 5050 ( đơn vị )
Đáp số : 5050 đơn vị
Từ 1 đến 100 có 100 số hạng
Tổng dãy trên là :
( 100 + 1 ) x 100 : 2 = 5050
Đ/S : 5050
`A)1/(1.2)+1/(2.3)+....+1/(100.101)`
`=1-1/2+1/2-1/3+...+1/100-1/101`
`=1-1/101=100/101`
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
Bài 1.
\(B=1+2+3+\cdot\cdot\cdot+98+99\)
Số các số hạng trong \(B\) là:
\(\left(99-1\right):1+1=99\left(số\right)\)
Tổng \(B\) bằng: \(\left(99+1\right)\cdot99:2=4950\)
Bài 2.
\(A=1+3+5+\cdot\cdot\cdot+997+999\)
Số các số hạng trong \(A\) là:
\(\left(999-1\right):2+1=500\left(số\right)\)
Tổng \(A\) bằng: \(\left(999+1\right)\cdot500:2=250000\)
Bài 3.
\(C=2+4+6+\cdot\cdot\cdot+96+98\)
Số các số hạng trong \(C\) là:
\(\left(98-2\right):2+1=49\left(số\right)\)
Tổng \(C\) bằng: \(\left(98+2\right)\cdot49:2=2450\)
#\(Toru\)
Ta có:
\(1+2+3+...+n\)
Số lượng số hạng là: `(n-1):1+1=n` (số hạng)
Tổng của dãy số là: `(n+1)*n/2`
Áp dụng ta có:
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+....+\dfrac{1}{1+2+3+...+100}\\ =\dfrac{1}{\dfrac{3\cdot\left(3+1\right)}{2}}+\dfrac{1}{\dfrac{4\cdot\left(4+1\right)}{2}}+...+\dfrac{1}{\dfrac{100\cdot\left(100+1\right)}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{100\cdot101}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\\ =2\cdot\dfrac{98}{303}\\ =\dfrac{196}{303}\)