phân tích x4+x2+1 thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+8x^2+17x+10\)
\(=x^3+2x^2+x^2+5x^2+10x+5x+2x+10\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(5x^2+5x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+5x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+5x+10\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
a: =(16x+20)^2-(10x+10)^2
=(16x+20-10x-10)(16x+20+10x+10)
=(26x+30)(6x+10)
=4(13x+15)(3x+5)
b: =(x-y+4-2x-3y+1)(x-y+4+2x+3y-1)
=(-x-4y+5)(3x+2y+3)
c: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(x^2+2x+1-x^2+2x-1)(x^2+2x+1+x^2-2x+1)
=2(x^2+1)*4x
=8x(x^2+1)
Thứ nhất em làm quá tắt, thứ 2 em trình bày nó rất là khó nhìn. Em làm nhanh cho có số lượng chứ anh thấy làm thế sao mấy bạn hỏi bài hiểu được hả em? Làm bằng cái tâm nha em!
x4 - x2 + 4x - 1
= x4 - ( x2 - 4x + 1 )
= (x2)2 - ( x - 1 )2
= ( x2 - x +1 ).( x2 +x -1 )
Chúc bạn học tốt nha !
Tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-7-x-2-1-thanh-nhan-tu-faq417522.html
\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\\ =\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
B = (x + 3)(x - 1)(x - 5)(x + 15) + 64x2
B = x4 + 12x3 - 58x2 - 180x + 225 + 64x2
B = x4 + 12x3 + 6x2 - 180x + 225
\(x^4+x^2+1=\left(x^2\right)^2+2.x^2.1+1^2=\left(x^2+1\right)^2\)
\(#NqHahh\)
\(x^4+x^2+1\)
\(=x^4+2x^2+1-x^2\)
\(=\left(x^2+1\right)^2-x^2=\left(x^2+1-x\right)\left(x^2+1+x\right)\)