K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: D đối xứng H qua AB

=>AH=AD;BH=BD

E đối xứng H qua AC

=>AH=AE; CH=CE

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó: ΔAHB=ΔADB

=>\(\widehat{AHB}=\widehat{ADB}=90^0\)

ΔAHB=ΔADB

=>\(\widehat{HAB}=\widehat{DAB}\)

=>AB là phân giác của góc HAD

Xét ΔAHC và ΔAEC có

AH=AE

CH=CE

AC chung

Do đó: ΔAHC=ΔAEC

=>\(\widehat{AHC}=\widehat{AEC}=90^0\)

ΔAHC=ΔAEC

=>\(\widehat{HAC}=\widehat{EAC}\)

=>AC là phân giác của góc HAE

\(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=2\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

=>BD//CE

Xét tứ giác BDEC có BD//EC

nên BDEC là hình thang

b: Ta có: AD=AH

AH=AE

Do đó: AD=AE

=>A là trung điểm của DE

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=HA^2\)

=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\left(\dfrac{DE}{2}\right)^2\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=>\(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{25}{144}\)

=>\(AH=\sqrt{\dfrac{144}{25}}=\dfrac{12}{5}=2,4\left(cm\right)\)

=>DE=2AH=4,8(cm)

a: DH=căn DE^2-EH^2=12cm

Xét ΔDEF vuông tại D có DH là đường cao

nên DE^2=EH*EF
=>EF=15^2/9=25cm

DF=căn 25^2-15^2=20cm

HF=25-9=16cm

b: C=15+20+25=40+20=60cm

S=1/2*15*20=10*15=150cm2

DM=EF/2=25/2=12,5cm

c: Xét ΔEDF có HK//DF

nên HK/DF=EH/EF

=>HK/20=9/25

=>HK=180/25=7,2cm

20 tháng 6 2017

A B C H D

20 tháng 6 2017

a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút 

=> AD = AH và AH = AE

Xét tam giác BDA và tam giác BHA có :

BA chung 

BD = BH (theo tính chất nêu trên)            => tam giác BDA = tam giác BHA  (1)

AD = AH 

Xét tam giác AHC và tam giác AEC có :

AC chung 

AH = AE                                                => tam giác AHC = tam giác AEC  (2)

CH = CE (như tính chất nêu trên)

Từ (1) 

=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)

Từ (2) ta cũng có :

\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)

Ta lại có :

\(\widehat{HAB}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)

=> D , A , E thẳng hàng 

VÀ AD vuông góc với BD

     AE vuông góc với CE

MÀ AD , AE thuộc DE

=> BD // CE

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

11 tháng 5 2018

Cậu tự vẽ hình nhá 

a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A 

Tam giác ADH có AB là đường cao đồng thời là phân giác 

=> góc DAB = góc HAB 

Tương tự với tam giác AHE => góc HAC = góc EAC

Ta có : 

góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180

=> D,A,E thẳng hàng 

Nhận thấy 

Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)

Tương tự , ta cũng có : góc BHA = góc BDA = 90(2)

Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)

b) Ta có : tam giác BHA đồng dạng với tam giác AHC 

Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)

Mà BH = BD , HC = CE

=> \(AH^2=BD.CE\)

<=> \(4AH^2=4BD.CE\)

<=> \(\left(2AH\right)^2=4BD.CE\)           (Do AD = AH = AE)

<=> \(DE^2=4BD.CE\)

19 tháng 3 2019

\(\Delta\)AHB=\(\Delta\)ADB(c-c-c) thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc ADB=90(1)

\(\Delta\)AEC=\(\Delta\)AHC(c-c-c)cũng thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc CEA=90(2)

Mà:D;E;A thẳng hàng(3)

từ 1,2 và 3 suy ra BCED là hình thang

19 tháng 3 2019

\(\Delta\)AEC đồng dạng \(\Delta\)BDA(g-g)=>BD.CE=AD.AE(1)

\(\Delta\)AIE=\(\Delta\)DKA(g-c-g)=>AE=AD=1/2DE(2)

1 và 2=>BD.CE=DE2/4

a: BC=căn 12^2+16^2=20cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC=3/4

=>BD/3=DC/4=(BD+DC)/(3+4)=20/7

=>BD=60/7cm; DC=80/7cm

Xét ΔCAB có ED//AB

nên ED/AB=CD/CB=4/7

=>ED/12=4/7

=>ED=48/7cm

b: S ABC=1/2*12*16=96cm2

BD/BC=3/7

=>S ABD/S ABC=3/7

=>S ABD=288/7cm2