Tính GTLN của biểu thức A= -5x² -12y² +12xy +28x -36y +1984,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4x^2-4x+1=\left(2x-1\right)^2\)
b, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
c, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
d, \(x^2+12xy+36y^2=\left(x+6y\right)^2\)
e, \(x^2-12xy+36y^2=\left(x-6y\right)^2\)
a, \(4x^2-4x+1\)
\(=4x^2-2x-2x+1=2x.\left(2x-1\right)-\left(2x-1\right)\)
\(=\left(2x-1\right)^2\)
b, \(x^2+4xy+4y^2\)
\(=x^2+2xy+2xy+4y^2\)
\(=x.\left(x+2y\right)+2y.\left(x+2y\right)\)
\(=\left(x+2y\right)^2\)
Chúc bạn học tốt!!! (bạn nhờ mình giải chi tiết bài này á)
\(A=\left(3x\right)^2+\left(2y\right)^2+81-12xy+2.\left(3x\right).9-2.\left(2y\right).9+9\)
\(A=\left(3x-2y+9\right)^2+9\ge9\)
\(\Rightarrow A_{min}=9\) khi \(3x-2y+9=0\Rightarrow3x=2y-9\Rightarrow x=\frac{2}{3}y-3\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{2}{3}\\b=-3\end{matrix}\right.\)
\(x^3-6x^2y+12xy^2-8y^3=-8\)
\(\Leftrightarrow\left(x-2y\right)^3=-8\)
=>x-2y=-2
\(3x^2-12xy+12y^2\)
\(=3\left(x^2-4xy+4y^2\right)\)
\(=3\left(x-2y\right)^2=12\)