tìm giá trị nhỏ nhất của biểu thức P=x^2 + 8x - 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(C=x^2-8x+20\\ C=x^2-8x+16+4\\ C=\left(x-4\right)^2+4\ge4\)
\(MinC=0\Leftrightarrow x-4=0\Leftrightarrow x=4\\ MinC=4\Leftrightarrow x=4\)
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
a, Ta có: \(\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2-17\ge-17\)
\(\Rightarrow B\ge-17\)
Dấu "=" xảy ra <=> (x+1)2 = 0 <=> x = -1
Vậy GTNN của B là -17 khi x = -1
b, Ta có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow25-\left(x-2\right)^2\ge25\)
\(\Rightarrow B\ge25\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x = 2
Vậy GTLN của B là 25 khi x = 2
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
\(\Rightarrow B\ge-16\)
Dấu "=" xảy ra khi
(x + 4)2 = 0 => x + 4 = 0 => x = - 4
vậy Min B = -16 khi x = -4
\(B=x^2+8x\)
\(=x^2.2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
Vì \(\left(x+4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)
Hay\(B\ge-16;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy MIN B= -16 \(\Leftrightarrow x=-4\)
\(A=\dfrac{2x^2-8x+17}{x^2-2x+1}\left(x\ne1\right)\)
\(\Leftrightarrow A\left(x^2-2x+1\right)=2x^2-8x+17\)
\(\Leftrightarrow Ax^2-2Ax+A=2x^2-8x+17\)
\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A-4\right)+A-17=0\left(1\right)\)
\(A-2=0\Leftrightarrow A=2\Leftrightarrow x=3,75\left(tm\right)\left(2\right)\)
\(A-2\ne0\Leftrightarrow A\ne2\Rightarrow\Delta'\ge0\Leftrightarrow\left(A-4\right)^2-\left(A-17\right)\left(A-2\right)\ge0\Leftrightarrow A\ge\dfrac{18}{11}\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\left(tm\right)\left(3\right)\)
\(\left(2\right)và\left(3\right)\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
P=x^3+8x-25
P=x^2+2.x.4-4^2-16-25
P=(x+4)^2-41
Có: (x+4)^2≥0 với mọi x
=>(x+4)^2-41 ≥-41 với mọi x
Dấu"=" xảy ra <=>(x+4)^2-41=-41
(x+4)^2=0
x+4=0
x=-4
Vậy GTNN của biểu thức là -41 khi x=-4