K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Đặt A = 1111....1111 (27 chữ số 1)

A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)

  = 111...1 . 1018 + 111...1 . 109 + 111...1

 = 111...1 .(1018 + 109 + 1)

Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)

    và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)

nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)

15 tháng 10 2021

Bài làm :

Số tự nhiên a chia cho 18 được số dư là 12.

1) 18 chia hết cho 6, và 12 chia hết cho 6, nên số a chia hết cho 6.

2) 18 chia hết cho 9, nhưng 12 không chia hết cho 9, nên số a không chia hết cho 9.

7 tháng 2 2017

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

7 tháng 2 2017

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

14 tháng 11 2023

a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19

Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\)  ⇒ a + 55 \(\in\) BC(6; 19) 

6 = 2.3; 19 = 19;       BCNN(6; 19) = 2.3.19 = 114

⇒ BC(6; 19) = {0; 114; 228; 342;...;}

\(\in\) { - 55; 59; 173;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 59 

a + 55 \(\in\) B(114)

⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)

14 tháng 11 2023

                      Bài 2: 

Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21

  Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)

    5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105

      ⇒BC(5; 21) = {0; 105; 210;...;}

         a+ 39 \(\in\) {0; 105; 210;...;}

     a \(\in\) {-39; 66; 171;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 66

a + 39 ⋮ 105

⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)

 

     

 

                

    

21 tháng 11 2017

35 nha bạn

21 tháng 11 2017

Mk cần bài giải nha

21 tháng 11 2021

2.

Vì 156 chia cho a dư 12 nên a là ước của 156 - 12 = 144.

Vì 280 chia cho a dư 10 nên a là ước của 280 - 10 = 270.

Vậy a ∈ ƯC(144, 270) và a > 12.

* Ta có; 144 = 24.32 và 270 = 2.33.5

Nên ƯCLN (144; 270)= 2.32 = 18

⇒ ƯC(144; 270) = {1; 2; 3; 6; 9; 18}

Kết hợp a > 12 nên a = 18.