Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán như sau: Tìm số tự nhiên nhỏ hơn 500, biết rằng khi chia 8, 10, 15, 20 có số dư theo thứ tự là 5, 7, 12, 17 và chia hết cho 51.Tôi đã giải như sau:Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) –...
Đọc tiếp
Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán như sau: Tìm số tự nhiên nhỏ hơn 500, biết rằng khi chia 8, 10, 15, 20 có số dư theo thứ tự là 5, 7, 12, 17 và chia hết cho 51.
Tôi đã giải như sau:
Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.
Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17
Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17
Suy ra B(10) – B(8) = 2; B(15) – B(10) = 5; B(20) – B(15) = 5.
B(8) = {0; 8; 16; 30; 40;48; 56; 64; 72; 80; 88; 96; 104; 112; 120…}
B(10) = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160;…}
B(15) = {0; 15; 30; 45; 60; 75; 90; 105; 120; 135; 150; 165; …}
B(20) = {0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260;…}
Để có B(10) – B(8) = 2 ta tìm được cặp 10 – 8; 90 – 88, …
Để có B(15) – B(10) = 5 ta tìm được cặp 15 – 10; 105 – 100, …
Để có B(20) – B(15) = 5 ta tìm được cặp 20 – 15; 80 – 75; 140-135, …
Tuy nhiên để cùng thỏa mãn B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17 thì ta chọn ở B(8) số 8, ở B(10) số 10, ở B(15) số 15, ở B(20) số 20. Điều này có nghĩa là
8 – 5 = 10 – 7 = 15 – 12 = 20 – 17 = 3.
Con số 3 này gợi ý cho ta cộng thêm vào đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17 hai vế với 3 ta có: a + 3 = 8b + 5 + 3 = 10c + 7 + 3 = 15d + 12 + 3 = 20e + 17 + 3
Suy ra: a + 3 = 8(b + 1) = 10(c + 1) = 15(d + 1) = 20(e + 1)
Suy ra a + 3 chia hết cho 8, 10, 15, 20.
BCNN(8, 10, 15, 20) = 23.3.5 = 120
Suy ra a + 3 thuộc BC(120) = {0; 120; 240; 360; 480; 600; 720;… }
Suy ra a thuộc {-3; 117; 237; 357; 477; 597; 717;…}
Để a nhỏ hơn 500 suy ra a thuộc {-3; 117; 237; 357; 477}
Để a chia hết cho 51 thì chỉ có a = 357 là thỏa mãn.
Vậy số tự nhiên a nhỏ hơn 500 thỏa mãn điều kiện của bài toán là 357.
5: a+b=7
=>a=7-b
b+c=9
=>c=9-b
c+a=8
=>7-b+9-b=8
=>16-2b=8
=>2b=16-8=8
=>b=4
=>a=7-4=3;c=9-4=5
1: a+b=17
a+b+c=20
=>c=20-17=3
a+c=15
=>a=15-c=15-3=1
b=17-a=17-1=16
2: \(\left\{{}\begin{matrix}a+b=5\\b+c=9\\a+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\c=9-b\\5-b+9-b=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}14-2b=6\\a=5-b\\c=9-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=8\\a=5-b\\c=9-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=5-4=1\\c=9-4=5\end{matrix}\right.\)
3: \(c=\dfrac{abc}{ab}=\dfrac{288}{24}=12\)
bc=96
=>b=96/12=8
\(a=\dfrac{24}{b}=\dfrac{24}{8}=3\)
4: \(\left\{{}\begin{matrix}ab=36\\bc=45\\ca=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{36}{b}\\c=\dfrac{45}{b}\\\dfrac{36}{b}\cdot\dfrac{45}{b}=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2=36\cdot45:20=81\\a=\dfrac{36}{b}\\c=\dfrac{45}{b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b\in\left\{9;-9\right\}\\a=\dfrac{36}{b}\\c=\dfrac{45}{b}\end{matrix}\right.\)
TH1: b=9
\(a=\dfrac{36}{9}=4;c=\dfrac{45}{b}=\dfrac{45}{9}=5\)
TH2: b=-9
=>\(a=\dfrac{36}{-9}=-4;c=\dfrac{45}{-9}=-5\)