K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

????????????????????????????????????/

11 tháng 5 2022

sửa x^2 - x^2y + y^2 + 4xy 

Thay x = 1 ; y = 2 vào ta được 

\(1-2+4+8=11\)

12 tháng 5 2022

Thay x = 1 và y = -2 ta có

12 -2.1.(-2) - (-2)2 + 4.1 .(-2)

= 1 - 2.1. (-2) - 4 + 4.1.(-2)

= 1 - (-4) - 4 + (-8)

= -7

12 tháng 5 2022

`x^2 - 2xy - y^2 + 4xy`

`= x^2 + ( 4xy-2xy)-y^2`

`= x^2 + 2xy -y^2` `(***)`

Thay `x=1;y=2` vào `(***)` được `:`

`1^2 + 2*1*(-2) - (-2)^2`

`= -7` 

 

Giải:

A=|x-2|+|y+5|-15

Xét thấy: |x-2|+|y+5| > hoặc = 0 với mọi x

=>|x-2|+|y+5|-15 > hoặc = 0-15

          A > hoặc = -15

A nhỏ nhất = -15 khi và chỉ khi:

|x-2|+|y+5|=0

=> x-2=0 và y+5=0

        x=2 và y=-5

Vậy (x;y)=(2;-5)

Chúc bạn học tốt!

à quên cái dòng ''xét thấy'' là với mọi x và y nha bạn, mk quên ghi đấy!khocroi

25 tháng 9 2020

1. x( x - 3 ) + y( y - 3 ) + 2xy - 35

= x2 - 3x + y2 - 3y + 2xy - 35

= ( x2 + 2xy + y2 ) - ( 3x + 3y ) - 35

= ( x + y )2 - 3( x + y ) - 35

= 52 - 3.5 - 35

= 25 - 15 - 35 = -25

2. 4x2 + y2 + 8x - 4xy - 4y + 100

= ( 4x2 - 4xy + y2 + 8x - 4y + 4 ) + 96

= [ ( 4x2 - 4xy + y2 ) + ( 8x - 4y ) + 4 ] + 96

= [ ( 2x - y )2 + 2.( 2x - y ).2 + 22 ] + 96

= ( 2x - y + 2 )2 + 96

= ( 4 + 2 )2 + 96

= 62 + 96 = 36 + 96 = 132

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

13 tháng 10 2021
Lấy 1 -1 2
15 tháng 12 2016

bạn làm được chưa biết chỉ mình vs nhékhocroikhocroi

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)