Chứng minh rằng 1994100--1 và 1994100+1 không thể đồng thời là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
Lời giải:
Gọi $\text{B(2021)}$ là bội của $2021$
$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$
Mà $2021=43\times 47$ không phải số nguyên tố
$\Rightarrow 2022^n-1$ không là số nguyên tố
$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố.
Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)
n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)
Vậy đề bạn sai
8n−1;8n;8n+18n−1;8n;8n+1 là 3 số tự nhiên liên tiếp nên chia hết cho 3.mà 8^n không chia hết cho 3 nên 1 trong 2 số còn lại chia hết cho 3.
Trường hợp 2 số đó là 2 và 3 không tìm được số tự nhiên n thoả mãn.vậy chúng không thể nguyên tố cùng nhau.
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
Giả sử có 8p-1;8p+1 là SNT
Nếu p = 3 => 8p+1=25 không phải SNT
=> p \(⋮̸3\)
=> 8p \(⋮̸3\)
Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp
=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
k nha
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
chúc bn hok toyó @_@
Nếu P=2 => 8P-1=8.2-1=15
8P+1=8.2+1=17 (thỏa mãn)
Nếu P=3 =>8P-1=8.3-1=23
8P+1=8.3+1=25 (thỏa mãn)
Nếu p>3 thì P=3K+1 hoặc 3K+2
+Với P=3K+1=(8.3K+1-1)=(24K+0)=24k chia hết cho 3(hợp số)
+Với P=3k+2=(8.3k+2+1)=(24k+3) chia hết cho 3 (hợp số)
Vậy 8P+1 và 8P-1 không đồng thời là số nguyên tố.
1994100 = (19942)50 = (...6) 50 = ...6 (vì số có tận cùng là 6 khi nâng lên lũy thừa mũ bất kì luôn cho tận cùng là 6)
=> 1994100 - 1 = ...6 - 1 = ...5
Mà ...5 chia hết cho 5
=> 1994100 là hợp số
=> 1994100-1 và 1994100+1 không thể đồng thời là số nguyên tố