K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7

Nhận thấy \(x_0=0\) không phải là nghiệm của phương trình đã cho.

Giả sử \(x_0< 0\), ta có \(x_0^3-x_0-1=0\) 

\(\Leftrightarrow x_0\left(x_0^2-1\right)=1\)

\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0+1\right)=1\)    (*)

Nếu \(x_0\le-1\) thì VT (*) \(\le0< 1=VP\), do đó (*) vô lý.

Xét \(-1< x_0< 0\) thì \(-1< x_0^3< 0\) và \(0< -x_0< 1\)

Do đó \(VT=x_0^3-x_0< 0+1=1=VP\) nên (*) vô lý.

Vậy điều giả sử ban đầu là sai \(\Rightarrow x_0>0\)

 

Đặt f(x)=x3-x-1

Vì \(f\left(x\right)=x^3-x-1\)

nên hàm số liên tục trên R

\(f\left(1\right)=1^3-1-1=-1;f\left(2\right)=2^3-2-1=5\)

Vì \(f\left(1\right)\cdot f\left(2\right)< 0\)

nên hàm số f(x)=x3-x-1 có nghiệm trên khoảng (1;2)

=>\(x_0\in\left(1;2\right)\)

=>\(x_0>0\)