K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

a: loading...

b: Xét ΔBMC có

BK,CI là các đường cao

BK cắt CI tại E

Do đó: E là trực tâm của ΔBMC

=>ME\(\perp\)BC

mà AB\(\perp\)BC

nên ME//AB

Xét ΔKAB có

M là trung điểm của KA

ME//AB

Do đó: E là trung điểm của BK

=>BE=EK

c: Xét ΔKAB có

M,E lần lượt là trung điểm của KA,KB

=>ME là đường trung bình của ΔKAB

=>\(ME=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

và \(NC=\dfrac{CD}{2}\)(N là trung điểm của CD)

nên ME=NC

Ta có: ME//AB

CD//AB

Do đó: ME//CD

Xét tứ giác MNCE có

ME//CN

ME=CN

Do đó: MNCE là hình bình hành

d: ta có: MNCE là hình bình hành

=>MN//CE

mà CE\(\perp\)MB

nên MN\(\perp\)MB

10 tháng 12 2021

a: Xét ΔACE có 

CD là đường trung tuyến

CD là đường cao

CD=AE/2

Do đó: ΔACE vuông cân tại C

21 tháng 10 2021

a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)

Do đó \(AH=CI\)

Mà AH//CI (⊥BD) nên AHCI là hbh

b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC

Do đó A đối xứng C qua M

a)

Ta có: ΔABC cân tại A(gt)

mà AM là đường phân giác ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(cmt)

BK là đường cao ứng với cạnh AC(Gt)

AM cắt BK tại I(Gt)

Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)

Suy ra: CI\(\perp\)AB(Đpcm)

NA
Ngoc Anh Thai
Giáo viên
4 tháng 4 2021

undefined

a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB

b) Tam giác BDH = tam giác DBP (ch.gn)

Do đó BH = DP

BDKQ là hình chữ nhật => DP = HK

=> BK = BH + HK = DP + DQ (đpcm)

a: Xét ΔABC có

AM,BK là đường cao

AM cắt BK tại I

=>I là trực tâm

=>CI vuông góc AB tại N

b:

Xet ΔAKB vuông tại K và ΔANC vuông tại N có

AB=AC
góc KAB chung

=>ΔAKB=ΔANC

=>BK=CN

DP//NC

=>DP/NC=BD/BC

=>DP/BK=BD/BC

DQ//BK

=>DQ/BK=CD/CB

=>DQ+DP=BK(BD/BC+CD/CB)=BK

9 tháng 9 2019

Áp dụng định lí Py-ta-go cho hai tam giác vuông AKH và AIH, ta có:

    \(AK^2+HK^2=AH^2\)

    \(AI^2+HI^2=AH^2\)

   \(\Rightarrow AK^2+HK^2=AI^2+HI^2\)                                                                       \(\left(\cdot\right)\)

Giả sử \(AB\ne AC\)ta xét 2 trường hợp:

T/hợp 1: \(AB>AC\)

\(\Rightarrow AB-BK>AC-CI\)( vì \(BK=CI\)) hay \(AK>AI\)                      \(\left(1\right)\)

Mặt khác, vì \(AB>AC\)nên \(HB>HC\)( quan hệ đường xiên - hình chiếu )

\(\Rightarrow HB^2>HC^2\)hay \(HK^2+BK^2>HI^2+CI^2\Rightarrow HK>HI\)             \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra: \(AK^2+HK^2>AI^2+HI^2\): trái với  \(\left(\cdot\right)\)

T/hợp 2: \(AB< AC\): Chứng minh tương tự ta có: \(AK^2+HK^2< AI^2+HI^2\): trái với \(\left(\cdot\right)\)

Vậy điều giả sử \(AB\ne AC\)là sai, hay \(AB=AC\)