(7-\(\dfrac{1}{5}\)+\(\dfrac{1}{3}\))-(6+\(\dfrac{9}{5}\)+\(\dfrac{4}{3}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `1/3 - 1/4 : 2/5 = 1/3 - 5/8 = -7/24`
b) `6/7-(5/6+1/3)-(2/3+1/7) = 6/7-5/6-1/3-2/3-1/7`
`=(6/7-1/7)-(1/3+2/3)-5/6`
`=5/7-1-5/6`
`=-47/42`
c) `-5/9 . 2/5 + 4 5/9 + 5/9 . (-3/5)`
`= -5/9 . 2/5 + 4 + 5/9 + (-5/9) . 3/5`
`=-5/9 . (2/5 + 3/5-1) + 4`
`=-5/9 . 0 +4`
`=4`
d) 3 1/2 - (5 4/7 - 1 1/2) : 0,75`
`=7/2 - (39/7 - 3/2) : 3/4`
`= 7/2 - 57/14 : 3/4`
`=7/2 - 38/7`
`=-27/14`
a: \(=6+\dfrac{4}{5}-1-\dfrac{2}{3}-3-\dfrac{4}{5}\)
\(=2-\dfrac{2}{3}=\dfrac{4}{3}\)
b: \(=7+\dfrac{5}{9}-2-\dfrac{3}{4}-3-\dfrac{5}{9}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
c: =6+7/7-1-3/4-2-5/7
=3+2/7-3/4
=84/28+8/28-21/28
=84/28-13/28
=71/28
\(=\dfrac{85}{18}:\dfrac{85}{9}-\dfrac{136}{45}:\dfrac{136}{15}=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\)
Để tính tổng của biểu thức này, chúng ta cần thực hiện các phép cộng và trừ theo thứ tự từ trái sang phải.
\[4 + \frac{5}{6} - \frac{1}{9} \times \frac{1}{10} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{9} \times \frac{9}{5} + 1 - \frac{1}{3}\]
Đầu tiên, chúng ta sẽ làm các phép tính liên quan đến phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{18}{90} + \frac{60}{180} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{2}{10} + \frac{10}{30} - \frac{2}{10} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{36 + 35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{2}{6} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tính tổng các số nguyên:
\[= 4 - 3 + 1\]
Cuối cùng, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{30}{90}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6}
\(4\dfrac{2}{3}+3\dfrac{2}{7}=\dfrac{14}{3}+\dfrac{23}{7}=\dfrac{14x7+23x3}{21}=\dfrac{167}{21}\)
\(8\dfrac{5}{9}:5\dfrac{1}{2}=\dfrac{77}{9}:\dfrac{11}{2}=\dfrac{77}{9}x\dfrac{2}{11}=\dfrac{14}{9}\)
\(6\dfrac{5}{7}:2\dfrac{1}{6}=\dfrac{47}{7}:\dfrac{13}{6}=\dfrac{47}{7}x\dfrac{6}{13}=\dfrac{282}{91}\)
\(1\dfrac{3}{4}x2\dfrac{5}{6}=\dfrac{7}{4}x\dfrac{17}{6}=\dfrac{119}{24}\)
\(5\dfrac{3}{4}-2=\dfrac{23}{4}-2=\dfrac{23}{4}-\dfrac{8}{4}=\dfrac{15}{4}\)
\(\dfrac{3}{10}+\dfrac{4}{7}.\dfrac{5}{4}-\dfrac{1}{70}=\dfrac{3}{10}+\dfrac{5}{7}-\dfrac{1}{70}=\dfrac{21}{70}+\dfrac{50}{70}-\dfrac{10}{70}=\dfrac{70}{70}=1\)
\(\dfrac{3}{4}\cdot\dfrac{7}{9}\cdot\dfrac{1}{9}\cdot\dfrac{7}{4}\)
\(=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot9\cdot9\cdot4}=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot3\cdot3\cdot9\cdot4}\)
\(=\dfrac{7\cdot1\cdot7}{4\cdot3\cdot9\cdot4}=\dfrac{49}{432}\)
\(\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{9}\cdot\dfrac{9}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\left(\dfrac{8}{13}-1+\dfrac{5}{13}\right)\)
\(=\dfrac{6}{7}\cdot0\)
\(=0\)
\(2\cdot11\cdot\dfrac{3}{4}\cdot\dfrac{9}{121}\)
\(=\dfrac{2\cdot11\cdot3\cdot9}{4\cdot121}=\dfrac{2\cdot11\cdot3\cdot9}{2\cdot2\cdot11\cdot11}\)
\(=\dfrac{3\cdot9}{2\cdot11}=\dfrac{27}{22}\)
a, \(\dfrac{7}{8}\) \(\times\) \(\dfrac{3}{13}\) + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{4}{13}\)
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{21}{8}\) + \(\dfrac{16}{9}\))
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{189}{72}\) + \(\dfrac{128}{72}\))
= \(\dfrac{1}{13}\) \(\times\) \(\dfrac{317}{73}\)
= \(\dfrac{317}{949}\)
b, \(\dfrac{6}{5}\) + \(\dfrac{7}{3}\) + \(\dfrac{8}{9}\)
= \(\dfrac{54}{45}\) + \(\dfrac{105}{45}\) + \(\dfrac{40}{45}\)
= \(\dfrac{199}{45}\)
c, 23 : \(\dfrac{5}{14}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{322}{5}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{20286}{315}\) + \(\dfrac{270}{315}\) + \(\dfrac{140}{315}\)
= \(\dfrac{20696}{315}\)
d, 4\(\dfrac{1}{4}\) + 7\(\dfrac{3}{7}\) - 2\(\dfrac{4}{17}\)
= 4 + \(\dfrac{1}{4}\) + 7 + \(\dfrac{3}{7}\) - 2 - \(\dfrac{4}{17}\)
= (4+7-2) + (\(\dfrac{1}{4}\) + \(\dfrac{3}{7}\) - \(\dfrac{4}{17}\))
= 9 + \(\dfrac{119}{476}\) + \(\dfrac{204}{476}\) - \(\dfrac{112}{476}\)
= 9\(\dfrac{211}{476}\) = \(\dfrac{4495}{476}\)
e, 8 - (9\(\dfrac{2}{11}\) + \(\dfrac{8}{33}\))
= 8 - 9 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= -1 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= \(\dfrac{-33}{33}\) - \(\dfrac{-6}{33}\) - \(\dfrac{8}{33}\)
= - \(\dfrac{47}{33}\)
\(\left(7-\dfrac{1}{5}+\dfrac{1}{3}\right)-\left(6+\dfrac{9}{5}+\dfrac{4}{3}\right)\\ =7-\dfrac{1}{5}+\dfrac{1}{3}-6-\dfrac{9}{5}-\dfrac{4}{3}\\ =\left(7-6\right)-\left(\dfrac{1}{5}+\dfrac{9}{5}\right)+\left(\dfrac{1}{3}-\dfrac{4}{3}\right)\\ =1-2-1\\ =-2\)
\(\left(7-\dfrac{1}{5} +\dfrac{1}{3}\right)-\left(6+\dfrac{9}{5}+\dfrac{4}{3}\right)\)
\(=7-\dfrac{1}{5}+\dfrac{1}{3}-6-\dfrac{9}{5}-\dfrac{4}{3}\)
\(=\left(7-6\right)-\left(\dfrac{1}{5}+\dfrac{9}{5}\right)+\left(\dfrac{1}{3}-\dfrac{4}{3}\right)-\dfrac{1}{3}\)
\(=1-2+\left(-1\right)-\dfrac{1}{3}\)
\(=\left[1+\left(-1\right)\right]-2-\dfrac{1}{3}\)
\(=0-2-\dfrac{1}{3}\)
\(=-2-\dfrac{1}{3}\)
\(=-\dfrac{6}{3}-\dfrac{1}{3}\)
\(=-\dfrac{7}{3}\)