giup mik voi
Tìm m,n để hệ PT {2(m+1)x-7(n-2)y=6
(m+1)x+(n-2)y=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
a/ \(x^2+y^2=1\)
\(\Leftrightarrow m^2+\left(m+1\right)^2=1\)
\(\Leftrightarrow2m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
b/ \(x-y=m-\left(m+1\right)=-1\)
\(\Leftrightarrow x-y+1=0\)
Đây là hệ thức liên hệ x;y ko phụ thuộc m
a/ Bạn tự giải (và chắc đề là k=5)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}k^2x-ky=2k\\x+ky=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=kx-2\\\left(k^2+1\right)x=2k+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2k+1}{k^2+1}\\y=\frac{2k^2+k}{k^2+1}-2=\frac{k-2}{k^2+1}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{2k+1}{k^2+1}+\frac{\left(k-2\right)^2}{\left(k^2+1\right)^2}=1\)
\(\Leftrightarrow\left(2k+1\right)\left(k^2+1\right)+\left(k-2\right)^2=\left(k^2+1\right)^2\)
\(\Leftrightarrow\left(k^2+1\right)\left(k^2-2k\right)-\left(k-2\right)^2=0\)
\(\Leftrightarrow\left(k-2\right)\left(k^3+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-\sqrt[3]{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)
a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)
\(\Rightarrow mx+my=4m-4\)
\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)
Trừ pt trên cho dưới:
\(\left(m-1\right)x=m-1\)
- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)
- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)
\(\Rightarrow y=-m-x=-m-1\)
Để \(y^2=x\)
\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\left(m+1\right)x-7\left(n-2\right)y=6\\\left(m+1\right)x+\left(n-2\right)y=12\end{matrix}\right.\left(m\ne-1;n\ne2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+1\right)x-7\left(n-2\right)y=6\\2\left(m+1\right)x+2\left(n-2\right)y=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}9\left(n-2\right)y=-18\\\left(m+1\right)x+\left(n-2\right)y=12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-18}{9\left(n-2\right)}=\dfrac{-2}{n-2}\\\left(m+1\right)x+\left(n-2\right)\cdot\dfrac{-2}{n-2}=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{n-2}\\\left(m+1\right)x-2=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{n-2}\\\left(m+1\right)x=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{n-2}\\x=\dfrac{26}{m+1}\end{matrix}\right.\)