K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6

\(\left\{{}\begin{matrix}2\left(m+1\right)x-7\left(n-2\right)y=6\\\left(m+1\right)x+\left(n-2\right)y=12\end{matrix}\right.\left(m\ne-1;n\ne2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+1\right)x-7\left(n-2\right)y=6\\2\left(m+1\right)x+2\left(n-2\right)y=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}9\left(n-2\right)y=-18\\\left(m+1\right)x+\left(n-2\right)y=12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-18}{9\left(n-2\right)}=\dfrac{-2}{n-2}\\\left(m+1\right)x+\left(n-2\right)\cdot\dfrac{-2}{n-2}=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{n-2}\\\left(m+1\right)x-2=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{n-2}\\\left(m+1\right)x=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{n-2}\\x=\dfrac{26}{m+1}\end{matrix}\right.\)

NV
13 tháng 4 2020

\(\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

a/ \(x^2+y^2=1\)

\(\Leftrightarrow m^2+\left(m+1\right)^2=1\)

\(\Leftrightarrow2m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

b/ \(x-y=m-\left(m+1\right)=-1\)

\(\Leftrightarrow x-y+1=0\)

Đây là hệ thức liên hệ x;y ko phụ thuộc m

cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=3m-1\left(1\right)\\x+my=m+1\left(2\right)\end{matrix}\right.\) a) giải và biện luận hệ pt b) tìm m để đường thẳng có pt(1) và đường thẳng có pt(2) cắt nhau tại điểm M(x;y) nằm phía trên trục hoành c) tìm m để khoảng cách từ gốc tọa độ đến đường thẳng(1) lớn nhất d) tìm điểm cố định mà đường thẳng(2) luôn đi qua với mọi m e) tìm m để đường thẳng...
Đọc tiếp

cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=3m-1\left(1\right)\\x+my=m+1\left(2\right)\end{matrix}\right.\)

a) giải và biện luận hệ pt

b) tìm m để đường thẳng có pt(1) và đường thẳng có pt(2) cắt nhau tại điểm M(x;y) nằm phía trên trục hoành

c) tìm m để khoảng cách từ gốc tọa độ đến đường thẳng(1) lớn nhất

d) tìm điểm cố định mà đường thẳng(2) luôn đi qua với mọi m

e) tìm m để đường thẳng (2) cắt hai trục tọa độ tạo thành 1 tam giác cân

f) tìm m để đường thẳng có pt(1) và đường thẳng có pt(2) cắt nhau tại điểm M(x;y) cách đều hai trục tọa độ

g) tìm m nguyên để hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x;y đều nguyên

h) C/m rằng : Khi hệ pt có nghiệm duy nhất (x;y) thì điểm M(x;y) luôn nằm trên một đường thẳng cố dịnh

0
NV
6 tháng 3 2020

a/ Bạn tự giải (và chắc đề là k=5)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}k^2x-ky=2k\\x+ky=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=kx-2\\\left(k^2+1\right)x=2k+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2k+1}{k^2+1}\\y=\frac{2k^2+k}{k^2+1}-2=\frac{k-2}{k^2+1}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{2k+1}{k^2+1}+\frac{\left(k-2\right)^2}{\left(k^2+1\right)^2}=1\)

\(\Leftrightarrow\left(2k+1\right)\left(k^2+1\right)+\left(k-2\right)^2=\left(k^2+1\right)^2\)

\(\Leftrightarrow\left(k^2+1\right)\left(k^2-2k\right)-\left(k-2\right)^2=0\)

\(\Leftrightarrow\left(k-2\right)\left(k^3+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-\sqrt[3]{2}\end{matrix}\right.\)

9 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)

a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)

\(\Rightarrow mx+my=4m-4\)

\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)

NV
19 tháng 11 2019

Trừ pt trên cho dưới:

\(\left(m-1\right)x=m-1\)

- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)

- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)

\(\Rightarrow y=-m-x=-m-1\)

Để \(y^2=x\)

\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)