K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2020

\(\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

a/ \(x^2+y^2=1\)

\(\Leftrightarrow m^2+\left(m+1\right)^2=1\)

\(\Leftrightarrow2m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

b/ \(x-y=m-\left(m+1\right)=-1\)

\(\Leftrightarrow x-y+1=0\)

Đây là hệ thức liên hệ x;y ko phụ thuộc m

11 tháng 1 2021

\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\left(1\right)\\x+my=2\left(2\right)\end{matrix}\right.\)

Từ (1) ⇒ mx=1-y⇒\(m=\dfrac{1-y}{x}\) Thay vào (2) ta được:

⇒x+\(\left(\dfrac{1-y}{x}\right)y\)=2⇒\(x+\dfrac{y-y^2}{x}=2\Rightarrow x^2+y-y^2=2\Rightarrow x^2-y^2+y=2\) 

Đây là hệ thức liên hệ giữa x và y ko phụ thuộc vào m

 

a:

Để hệ có nghiệm duy nhất thì m/2<>-2/-m

=>m^2<>4

=>m<>2 và m<>-2

 

 

11 tháng 1 2022

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)

\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)

\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)

\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy ...

 

 

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{1}\ne\dfrac{1}{m-1}\)

=>\(\left(m-1\right)^2\ne1\)

=>\(m-1\notin\left\{1;-1\right\}\)

=>\(m\notin\left\{0;2\right\}\)

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+\left(m-1\right)\left[m-\left(m-1\right)x\right]=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+m\left(m-1\right)-x\left(m-1\right)^2=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x\left[1-\left(m-1\right)^2\right]=2-m\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left[\left(m-1\right)^2-1\right]=m\left(m-1\right)-2\\y=m-\left(m-1\right)x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m-1-1\right)\left(m-1+1\right)=\left(m-2\right)\left(m+1\right)\\y=m-\left(m-1\right)x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m}\\y=m-\dfrac{\left(m-1\right)\left(m+1\right)}{m}=\dfrac{m^2-m^2+1}{m}=\dfrac{1}{m}\end{matrix}\right.\)

=>\(x-y=\dfrac{m+1}{m}-\dfrac{1}{m}=1\) không phụ thuộc vào m

1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{1}{-1}=-1\)

=>\(m\ne-1\)

2: \(\left\{{}\begin{matrix}x+y=1\\mx-y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y+mx-y=1+2m\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m+1\right)=2m+1\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=1-x=1-\dfrac{2m+1}{m+1}=\dfrac{m+1-2m-1}{m+1}=-\dfrac{m}{m+1}\end{matrix}\right.\)

x+2y=2

=>\(\dfrac{2m+1}{m+1}+\dfrac{-2m}{m+1}=2\)

=>\(\dfrac{1}{m+1}=2\)

=>\(m+1=\dfrac{1}{2}\)

=>\(m=-\dfrac{1}{2}\left(nhận\right)\)

=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2

=>x=2-1+m^2/m^2 và y=(m+1)x-m-1

=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2

x+y=(m^2+m+2)/m^2

Để x+y min thì m^2+m+2 min

=>m^2+m+1/4+7/4 min

=>(m+1/2)^2+7/4min

=>m=-1/2

21 tháng 1 2021

 

b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)

Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó ta có hpt:

\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x, y trái dấu nên ta xét 2 trường hợp

Th1: x > 0; y < 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)

Th2: x < 0; y > 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)

Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu

c, Từ b ta có:

 Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)

Xét các trường hợp:

Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\) 

\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 1

\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)

Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)

\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 7

\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)

Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|

Chúc bn học tốt!

21 tháng 1 2021

Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt