x-1/2=y-2/3=z-2/4 và x-2y+3z=14
giải hộ mình với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
Ta có:
\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1
y=3k+2
z=4k+3
Thay vào: x - 2y + 3z = -10
(2k+1)-2x(3k+2)+3x(4k+3)= -10
(2k+1)-(6k+4)+(12k+9)= -10
(2k-6k+12k)+(1-4+9) = -10
8k + 6 = -10
8k = -16
k = -2
=> x = 2x(-2)+1 = -3
y = 3x(-2)+2 = -4
z =4x(-2)+3 = -5
Vậy .............
Nếu đúng nhớ **** cho mk nha!
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)
Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)
=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)
=> x + y + z - 6 = -10.9 : 3 = -30
=> x + y + z = -24
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-2}{4}=\dfrac{\left(x-1\right)-2\left(y-2\right)+3\left(z-2\right)}{2-2.3+3.4}=\dfrac{x-2y+3z+\left(-1+4-6\right)}{2-6+12}\\ =\dfrac{14-3}{8}=\dfrac{11}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{11}{8}.2=\dfrac{11}{4}\\y-2=\dfrac{11}{8}.3=\dfrac{33}{8}\\z-2=\dfrac{11}{8}.4=\dfrac{11}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{15}{4}\\y=\dfrac{49}{8}\\z=\dfrac{15}{2}\end{matrix}\right.\)
Ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-2}{4}=\dfrac{2y-4}{6}\)
\(=\dfrac{3z-6}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-6\right)}{2-6+12}\)
\(=\dfrac{x-2y+3z-3}{8}=\dfrac{14-3}{8}=\dfrac{11}{8}\)
(áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(x-2y+3z=14\))
Suy ra:
\(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{11}{8}\\\dfrac{y-2}{3}=\dfrac{11}{8}\\\dfrac{z-2}{4}=\dfrac{11}{8}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{11\cdot2}{8}=\dfrac{11}{4}\\y-2=\dfrac{11\cdot3}{8}=\dfrac{33}{8}\\z-2=\dfrac{11\cdot4}{8}=\dfrac{11}{2}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{15}{4};y=\dfrac{49}{8};z=\dfrac{15}{2}\)
Vậy \(x=\dfrac{15}{4};y=\dfrac{49}{8};z=\dfrac{15}{2}\)