K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6

Với $x>0;x\ne1$:

$P=\frac{\sqrt x+1}{\sqrt x-1}+\frac{2\sqrt x+1}{x-\sqrt x}+\frac{1}{\sqrt x}$

$=\frac{\sqrt x\left(\sqrt x+1\right)}{\sqrt x\left(\sqrt x-1\right)}+\frac{2\sqrt x+1}{\sqrt x\left(\sqrt x-1\right)}+\frac{\sqrt x-1}{\sqrt x\left(\sqrt x-1\right)}$

$=\frac{x+\sqrt x+2\sqrt x+1+\sqrt x-1}{\sqrt x\left(\sqrt x-1\right)}$

$=\frac{x+4\sqrt x}{\sqrt x\left(\sqrt x-1\right)}=\frac{\sqrt x\left(\sqrt x+4\right)}{\sqrt x\left(\sqrt x-1\right)}=\frac{\sqrt x+4}{\sqrt x-1}$

$Toru$

Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right)\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(=\left(\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\sqrt{x}-2\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-2\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

20 tháng 12 2021

a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)

20 tháng 12 2021

dạ sao làm hơi tắt ạ

a: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+1\right)+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

b: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)

\(=\dfrac{x-4+5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

12 tháng 8 2021

em cảm ơn ạ

 

29 tháng 12 2022

\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)

\(=\left(1-x\right).2\sqrt{x}\)

\(=2\sqrt{x}-2x\sqrt{x}\)

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

1.

\(Q=\left[\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}-\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\sqrt{x}(\sqrt{x}+1)\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}-2)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}+2)(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2x}{x-1}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

\(A=\left[\frac{\sqrt{x}+2-(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{4\sqrt{x}}{x-4}\right].\frac{x-4}{\sqrt{x}+1}\)

\(=\left(\frac{4}{x-4}-\frac{4\sqrt{x}}{x-1}\right).\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{x-4}.\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{\sqrt{x}+1}\)

20 tháng 12 2022

\(=\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{x-1}:\dfrac{x+2\sqrt{x}+1-4\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

8 tháng 7 2023

\(a,P=\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}\right):\dfrac{x+1+2\sqrt{x}}{x-1}\left(dk:x>0,x\ne1\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right):\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\sqrt{x}-1+2\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\sqrt{x}+1\right).\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\sqrt{x}-1\)

\(b,P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

So với \(dk:x>0\) \(\Rightarrow S=\left\{x|0< x< 1\right\}\)

8 tháng 7 2023

đk với x>0,x khác 1

 

25 tháng 4 2023

\(\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x+\sqrt{x}}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0\right)\)

\(=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{2\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{\sqrt{x}+2}{2\sqrt{x}}\)

30 tháng 1 2023

b) ĐKXĐ : \(x\ne\pm1\)

\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)

30 tháng 1 2023

a) ĐKXĐ : \(x\ge0;x\ne16\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)

 

21 tháng 9 2021

\(a,A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0;x\ne1\right)\\ A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

\(b,x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ \Rightarrow\dfrac{2}{x+\sqrt{x}+1}>0\left(1\right)\)

\(\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\\ \Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\\ \Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\\ \Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{2}{1}=2\\ \Rightarrow A< 2\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow0< A< 2\)