So sánh các số hữu tỉ sau bằng cách hợp lí
a) 97/100 và 98/99
b) 19/18 và 2021/2020
c) 13/17 và 131/171
d) 51/61 và 515/616
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{97}{100}\) và \(\dfrac{98}{99}\)
\(\dfrac{97}{100}=\dfrac{97\times99}{100\times99}=\dfrac{9603}{9900}\)
\(\dfrac{98}{99}=\dfrac{98\times100}{99\times100}=\dfrac{9800}{9900}\)
Vì: \(9603< 9800\) nên => \(\dfrac{97}{100}< \dfrac{98}{99}\)
\(\dfrac{13}{17}\) và \(\dfrac{131}{171}\)
\(\dfrac{13}{17}=\dfrac{13\times171}{17\times171}=\dfrac{2223}{2907}\)
\(\dfrac{131}{171}=\dfrac{131\times17}{171\times17}=\dfrac{2227}{2907}\)
Vì: \(2227>2223\) nên: => \(\dfrac{13}{17}< \dfrac{131}{171}\)
\(\dfrac{51}{61}\) và \(\dfrac{515}{616}\)
\(\dfrac{51}{61}=\dfrac{51\times616}{61\times616}=\dfrac{31416}{37576}\)
\(\dfrac{515}{616}=\dfrac{515\times61}{616\times61}=\dfrac{31415}{37576}\)
Vì: \(31416>31415\) Nên => \(\dfrac{51}{61}>\dfrac{515}{616}\)
a/
$\frac{97}{100}< \frac{98}{100}< \frac{98}{99}$
c/
$\frac{131}{171}=1-\frac{40}{171}> 1-\frac{40}{170}=1-\frac{4}{17}=\frac{13}{17}$
d/
$\frac{51}{61}=1-\frac{10}{61}=1-\frac{100}{610}$
$\frac{515}{616}=1-\frac{101}{616}$
Xét hiệu:
$\frac{100}{610}-\frac{101}{616}=\frac{100.616-101.610}{610.616}$
$=\frac{100(610+6)-101.610}{610.616}$
$=\frac{600-610}{610.616}<0$
$\Rightarrow \frac{100}{610}< \frac{101}{616}$
$\Rightarrow 1-\frac{100}{610}> 1-\frac{101}{616}$
$\Rightarrow \frac{51}{61}> \frac{515}{616}$
a)51\85 lớn hơn
b)161\207 lớn hơn
c)29\73 lớn hơn
d)13\47 lớn hơn
ế)13\60 lớn hơn
f)40\59 lớn hơn
nhớ k cho mình nha
Ta có: 1/3 = 13/39
=> 13/38 > 13/39 = 1/3
1/3 = 29/87
=> 29/88 <29/87=1/3
Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88
Vậy -13/38 < -29/88
b)Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
a: -1/200<0<1/2000
b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)
\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)
mà 1400>1364
nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)
Cho 3 **** kiểu gì nào?
a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.
b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết \(a=bt\), với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\) cũng hữu tỉ.
c) Trong trường hợp này \(a,b\) có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\) là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\) cũng là số hữu tỉ.
cách giải là
\(\frac{4}{9}\)và \(\frac{13}{18}\)\(\Rightarrow\frac{4}{9}=\frac{4.2}{9.2}=\frac{8}{18}\)\(,\frac{13}{18}\)GIỮ NGUYÊN
VÌ \(\frac{8}{18}< \frac{13}{18}\)NÊN \(\frac{4}{9}< \frac{13}{18}\)
\(\frac{-15}{7}\)VÀ \(\frac{-6}{5}\)\(\Rightarrow\frac{-15}{7}=\frac{-15.5}{7.5}=\frac{-75}{35}\)
\(\frac{-6}{5}=\frac{-6.7}{5.7}=\frac{-42}{35}\)
VÌ \(\frac{-75}{35}< \frac{-42}{35}\) NÊN \(\frac{-15}{7}< \frac{-6}{5}\)
MK CHẮC CHẮN SẼ ĐÚNG
\(\frac{4}{9}< \frac{13}{18}\)
\(\frac{-15}{7}< \frac{-6}{5}\)
a; \(\dfrac{98}{99}\) > \(\dfrac{98}{100}\) (hai phân số dương có cùng tử số, phân số nào có mẫu lớn hơn thì phân số đó lớn hơn)
\(\dfrac{98}{100}\) > \(\dfrac{97}{100}\)(hai phân số dương có cùng mẫu số, phân số nào có tử số lớn hơn thì phân số đó lớn hơn)
Vậy \(\dfrac{97}{100}\) < \(\dfrac{98}{99}\)
b; \(\dfrac{19}{18}\) = 1 + \(\dfrac{1}{18}\)
\(\dfrac{2021}{2020}\) = 1 + \(\dfrac{1}{2020}\)
\(\dfrac{1}{18}\) > \(\dfrac{1}{2020}\) (hai phân số dương có cùng tử số phân số nào có mẫu số nhỏ hơn thì phân số đó lớn hơn)
\(\dfrac{19}{18}\) > \(\dfrac{2021}{2020}\) (hai phân số phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn)
Vậy: \(\dfrac{19}{18}\) > \(\dfrac{2021}{2020}\)