K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
3 tháng 6 2024

\(\left(2024^2+2022^2+2020^2+...+2^2\right)-\left(2023^2+2021^2+2019^2+...+1^2\right)\\ =\left(2024^2-2023^2\right)+\left(2022^2-2021^2\right)+\left(2020^2-2019^2\right)+...+\left(2^2-1^2\right)\\ =\left(2024-2023\right)\left(2024+2023\right)+\left(2022-2021\right)\left(2022+2021\right)+\left(2020-2019\right)\left(2020+2019\right)+...+\left(2-1\right)\left(2+1\right)\)\(=1.\left(2024+2023\right)+1.\left(2022+2021\right)+1.\left(2020+2019\right)+...+1.\left(2+1\right)\)\(=1+2+...+2019+2020+2021+2022+2023+2024\)\(=\dfrac{\left(1+2024\right).2024}{2}=2049300\)

3 tháng 6 2024

\(\left(2024^2+2022^2+2020^2+....+2^2\right)-\left(2023^2+2021^2+.....+1^2\right)\\ =2024^2+2022^2+2020^2+....+2^2-2023^2-2021^2-....-1^2\\ =\left(2024^2-2023^2\right)+\left(2022^2-2021^2\right)+.....+\left(2^2-1^2\right)\\ =\left(2024-2023\right)\cdot\left(2024+2023\right)+\left(2022-2021\right)\cdot\left(2022+2021\right)+.....+\left(2-1\right)\cdot\left(2+1\right)\\ =2024+2023+2022+2021+....+2+1\\ =\left(2024+1\right)\cdot\left[\left(2024-1\right):1+1\right]:2\\ =2025\cdot2024:2\\ =2049300\)

3 tháng 7 2021

a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)

b)

\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)

 

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Lời giải:

a. $153^2-53^2=(153-53)(153+53)=100.206=20600$

b. 

$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$

$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$

$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$

$=2020+2019+2018+2017+...+2+1$

$=\frac{2020.2021}{2}=2041210$

NV
15 tháng 6 2021

\(\sqrt{2021^2+2022^2+2021^2.2022^2}\)

\(=\sqrt{2021^2+\left(2021+1\right)^2+\left(2021.2022\right)^2}\)

\(=\sqrt{2021^2+2021^2+2.2021+1+\left(2021.2022\right)^2}\)

\(=\sqrt{2.2021.2022+1+\left(2021.2022\right)^2}\)

\(=\sqrt{\left(2021.2022+1\right)^2}\)

\(=2021.2022+1\) là 1 số nguyên (đpcm)

15 tháng 6 2021

Cảm ơn thầy nhiều

 

29 tháng 10 2023

\(2023^2-2022^2=\left(2023-2022\right)\left(2023+2022\right)\)

\(=1\cdot4045=4045\)

29 tháng 10 2023

$2023^2-2022^2$

$=(2023-2022)(2023+2022)$

$=4045$

AH
Akai Haruma
Giáo viên
23 tháng 6 2023

1. 

$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$

2.

$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$

3. Không phù hợp để tính nhanh 

4. 

$=15^8-(15^8-1)=1$

5.

$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$

$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$

$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$

$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$

DT
23 tháng 6 2023

6:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)

18 tháng 10 2021

a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)

b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)

`#3107.101107`

a)

`A = 2023^2` và `B = 2022*2024`

Ta có:

`A = 2023^2 = 2023*2023 = 2023*(2022 + 1) = 2023*2022 + 2023`

`B = 2022*2024 = 2022*(1 + 2023) = 2022*2023 + 2022`

Vì `2023 > 2022`

`=> 2023^2 > 2022*2024`

`=> A > B`

b)

`A=2024^2` và `B = 2023*2025`

`A = 2024^2 = 2024*2024 = 2024*(2023 + 1) = 2024*2023 + 2024`

`B = 2023*2025 = 2023*(2024 + 1) = 2023*2024 + 2023`

Vì `2024 > 2023 => 2024^2 > 2023*2025 => A > B`

Vậy, `A > B`

c)

`A = 2023*2027` và `B = 2025^2`

Ta có:

`A = 2023*(2025 + 2) = 2023*2025 + 4046`

`B = 2025^2 = 2025*2025 = 2025*(2023 + 2) = 2025*2023 + 4050`

Vì `4046 < 4050 => 2023*2027 < 2025^2 => A < B`

Vậy, `A < B`

d)

`107^50` và `73^75`

Ta có:

`107^50 = 107^(2*50) = (107^2)^25 = 11449^25`

`73^75 = 73^(3*25) = (73^3)^25 = 389017^25`

Vì `11449 < 389017 => 11449^25 < 389017^25 => 107^50 < 73^75`

Vậy, `107^50 < 73^75`

e)

`2^1993` và `7^714`

Ta có:

`2^1993 = 2^1988 * 2^5 = (2^14)^142 * 2^5 = 16384^142 * 32`

`7^714 = 7^710 * 7^4 = (7^5)^142 * 7^4 = 16807^142 * 2401`

Vì `16384 < 16807; 32 < 2401`

`=> 2^1993 < 7^714.`

9 tháng 10 2023

bạn có thể vào trang cá nhân của mình và làm đc mấy bài mình mới đăng lên đc ko ạ? bao nhiêu bài cũng đc ạ. XIN CẢM ƠN

14 tháng 10 2023

\(A=\left(1+2+3+...+2023\right)\left(1^2+2^2+...+2023^2\right)\left(65\cdot111-13\cdot15\cdot37\right)\)

\(=\left(1+2+3+...+2023\right)\cdot\left(1^2+2^2+...+2023^2\right)\cdot\left(13\cdot5\cdot3\cdot37-13\cdot5\cdot3\cdot37\right)\)

=0

\(E=\left(1^2+2^2+...+2021^2\right)\left(93-93\right)=0\)

1 tháng 5 2022

sao khó dữ vậy chị

 

1 tháng 5 2022

em mới có lớp 1 thôi