K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

a)A=20130+20131+20132+...+20132011

2013A=2013+20132+20133+...+20132012

2013A-A=2012A=20132012-20130

A=20132012-1/2012

k tao đi tao làm phần b cho

25 tháng 3 2018

b này : Chép cái đề bài vào

=>(2013+20131)+(20132+20133)+.....+(20132010+20132011)

=>2013.(1+2013)+20132.(1+2013)+.....+20132010.(1+2013)

=>2013.2014+20132.2014+......+20132010+.2014

=>2014.(2013+20132+.....+20132010) chia hết cho 2014

Vậy A chia hết cho 2014

25 tháng 3 2016

tinh chi vay

29 tháng 9 2018

a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671

S là : ( 2014 + 4 ) x 671 : 2 = 677039

b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )

c) \(M=2+2^2+2^3+...+2^{20}\)

\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)

\(2M=2^2+2^3+...+2^{21}\)

\(2M-M=2^{21}-2\)

Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại

\(\Rightarrow2^{21}\)có tận cùng là 2

\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5

\(\Rightarrow M⋮5\)

22 tháng 9 2017

a/ Ta có :

\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)

\(\Leftrightarrowđpcm\)

18 tháng 10 2017

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

20 tháng 12 2015

ab=10.a+b 
ba=10.b+a 
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11

20 tháng 12 2015

cái đầu thiếu đề (không có dữ liệu chính)

Ta có: ab + ba = (10a.1b) + (10b.1a)

=> (1b+10b).(1a+10a)

= 11b + 11a

= 11.2.ab chia hết cho 11

=> đpcm

11 tháng 12 2020

a) ab(a+b) = a2b + ab2 = 2ab2 chia hết cho 2

16 tháng 2 2022

b)ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

31 tháng 8 2021

a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)