K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

a) \(\left(x+\frac{2}{3}\right)^3=\frac{1}{8}\)

\(\Rightarrow x+\frac{2}{3}=\frac{1}{2}\)

\(x=\frac{1}{2}-\frac{2}{3}\)

\(x=\frac{-1}{6}\)

b) 52x-1-125 = 0

52x-1 = 0+125

52x-1 = 125

<=> 52x-1 = 53

=> 2x-1=3

=> x = 2

c) \(\frac{8^1}{3^{2x+1}}=3\)

\(\Rightarrow8=3.3^{2x+1}=3^{2x+1+1}=3^{2x+2}\)

\(\Rightarrow8\ne3^{2x+2}\)

=> x vô nghiệm

11 tháng 10 2017

a, \(\left(\frac{x+2}{3}\right)^3=\frac{1}{8}\)\(\Rightarrow\left(\frac{x+2}{3}\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow\frac{x+2}{3}=\frac{1}{2}\)\(\Rightarrow\left(x+2\right).2=3.1\)\(\Rightarrow x+2=\frac{3}{2}\)\(\Rightarrow x=-\frac{1}{2}\)

1 tháng 2 2017

a). 5x = 125

=>5x = 53

=> x = 3

b) 32x = 81

=> 32x = 34

=> 2x = 4

=> x = 2

c). 52x-3 – 2.52 = 52 .3

=>52x: 53 = 52 .3 + 2.52

=>52x: 53 = 52 .5

=>52x = 52 .5.53

=>52x = 56

=> 2x = 6

=> x=3

1 tháng 2 2017

a) 5x = 125

x = 125 : 5

x = 25

b) 32x = 81

x = 81 : 32

x = 81/ 32

c) 52x - 3 - 2.52 = 52.3

52x - 3 - 104 = 156

x - 3 - 104 = 156 : 52

x - 3 - 104 = 3

x - 3 = 3 + 104

x - 3 = 107

x = 107 + 3

x = 110

Ko chắc lắm , sai thì Sorry nhé . vui

21 tháng 2 2021

b) 32x = 81

    32x = 34

=> 2x = 4

=>   x = 2

a). 52x-3 – 2.52 = 52 .3 

             52x: 53 = 52 .3 + 2.52 

             52x: 53 = 52 .5

                   52x = 52 .5.53 

                   52x = 56

               => 2x = 6

                  => x=3

18 tháng 12 2023

\(5.5^{2x+2}=125\)

\(=>5^{2x+2}=125:5\)

\(=>5^{2x+2}=25=5^2\)

\(=>2x+2=2\)

\(=>2x=2-2\)

\(=>2x=0\)

\(=>x=0:2\)

\(=>x=0\)

18 tháng 12 2023

5 . 52x + 2 = 125

52x + 2 = 125 : 5

52x + 2 = 25

52x + 2 = 52 (cùng cơ số)

⇒ 2x + 2 = 2 hoặc 2x + 2 = -2

    2x = 2 - 2           2x = -2 - 2

    2x = 0                2x = -4

     x = 0                   x = -4 : 2

                                x = -2

Vậy x = 0 hoặc -2.

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

14 tháng 9 2021

undefined

14 tháng 9 2021

b) (x+1)^3-x(x-2)^2+x-1=0

 ⇔x^3+3x^2+3x+1-(x^3-4x^2+4x)=0

⇔ x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0

⇔7x^2-2=0

⇔7x^2=2

⇔7x^2=-2⇔x=-3

⇔7x^2=2⇔x=-căn 5

 

11 tháng 7 2021

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

13 tháng 11 2023

a) \(8x+56:14=60\)

\(\Rightarrow8x+4=60\)

\(\Rightarrow8x=56\)

\(\Rightarrow x=\dfrac{56}{8}\)

\(\Rightarrow x=7\)

b) Mình làm rồi nhé !

c) \(41-2^{x+1}=9\)

\(\Rightarrow2^{x+1}=41-9\)

\(\Rightarrow2^{x+1}=32\)

\(\Rightarrow2^{x+1}=2^5\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

d) \(3^{2x-4}-x^0=8\)

\(\Rightarrow3^{2x-4}-1=8\)

\(\Rightarrow3^{2x-4}=9\)

\(\Rightarrow3^{2x-4}=3^2\)

\(\Rightarrow2x-4=2\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=3\)

g) \(65-4^{x+2}=2014^0\)

\(\Rightarrow65-4^{x+2}=1\)

\(\Rightarrow4^{x+2}=64\)

\(\Rightarrow4^{x+2}=4^3\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=1\)

i) \(120+2\left(4x-17\right)=214\)

\(\Rightarrow2\left(4x-17\right)=214-120\)

\(\Rightarrow2\left(4x-17\right)=94\)

\(\Rightarrow4x-17=47\)

\(\Rightarrow4x=47+17\)

\(\Rightarrow4x=64\)

\(\Rightarrow x=16\)

13 tháng 11 2023

a: \(8x+56:14=60\)

=>8x+4=60

=>8x=60-4=56

=>x=56/8=7

b: \(5^{2x-3}-2\cdot5^2=5^2\cdot3\)

=>\(5^{2x-3}=5^2\cdot3+2\cdot5^2=5^3\)

=>2x-3=3

=>2x=6

=>x=3

c: \(41-2^{x+1}=9\)

=>\(2^{x+1}=41-9=32\)

=>x+1=5

=>x=4

d: \(3^{2x-4}-x^0=8\)

=>\(3^{2x-4}-1=8\)

=>\(3^{2x-4}=8+1=9\)

=>2x-4=2

=>2x=6

=>x=3

g: \(65-4^{x+2}=2014^0\)

=>\(65-4^{x+2}=1\)

=>\(4^{x+2}=65-1=64\)

=>x+2=3

=>x=1

i: 120+2(4x-17)=214

=>2(4x-17)=214-120=94

=>4x-17=94/2=47

=>4x=64

=>\(x=\dfrac{64}{4}=16\)

29 tháng 9 2017

ap dung bdt am gm

\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)

\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)

tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)

\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)

tiep tuc ap dung bat cauchy-schwarz dang engel ta co

\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)

dau = xay ra \(\Leftrightarrow a=b=c=1\)