K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5

Ta thấy \(N=n^4-n^2-2n-1\)

\(N=\left(n^2\right)^2-\left(n+1\right)^2\)

\(N=\left(n^2+n+1\right)\left(n^2-n-1\right)\)

Với \(n\inℕ\) thì \(n^2+n+1>n^2-n-1\) nên để N là SNT thì:

\(n^2-n-1=1\)   (1) và \(n^2+n+1\) là SNT.

(1) \(\Leftrightarrow n^2-n-2=0\)

\(\Leftrightarrow n^2+n-2n-2=0\)

\(\Leftrightarrow n\left(n+1\right)-2\left(n+1\right)=0\)

\(\Leftrightarrow\left(n+1\right)\left(n-2\right)=0\)

\(\Leftrightarrow n=2\) (do n là số tự nhiên)

Khi đó \(n^2+n+1=2^2+2+1=7\) là SNT -> Thỏa mãn.

Vậy \(n=2\)

6 tháng 11 2019

Phân tích  \(n^5+n^4+1=\left(n^2+n+1\right)\left(n^3-n+1\right)\) 

Ta thấy một số nguyên tố ko thể có lớn hơn hai ước hoặc chính nó 

Do đó để n\(\in\)số tự nhiên a => bắt buộc 1 trong  2 số \(n^2+n+1\left|n^3-n+1\right|\) phải bẳng 1 số còn lại là nguyên tố.

Nếu: \(n^2+n+1=1\Rightarrow n\left(n+1\right)=0=n=0\)

Nếu \(n^3-n+1=1\Leftrightarrow n\left(n^2-1\right)=0\Rightarrow n=0\) hoặc n = 1

Khi đó: Thấy n=0 (ko thoả mãn n=1=> số a đó = 3 \(\notin\)a (t/m)

Vậy còn 1 trường hợp là n = 1 

Khi đó n= 1 

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Lời giải:

a. Gọi $d=ƯCLN(n+2, n+3)$

$\Rightarrow n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d; 3n+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$

$\Rightarrow 2n+3, 3n+5$ nguyên tố cùng nhau.

16 tháng 12 2023

cảm ơn cô akai haruma ạ❤

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

11 tháng 3 2017