A= 2n-1 / 3-n
tìm n để có giá trị nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có giá trị nguyên thì 2n-1 chia hết cho n-3
2n-1
=2n-6+5
=2.(n-3)+5
Do 2.(n-3) luôn chia hết cho n-3 nên 5 chia hết cho n-3
n-3 thuộc 1;5;-1;-5
Bạn kẻ bảng ra và thử các trường hợp nhé,sau cùng ta được:
n thuộc 4;8;2;-2
b)Để A có giá trị nguyên lớn nhất thì n lớn nhất ở tử,bé nhất ở mẫu,Tức mẫu bằng 1,suy ra n=4,mẫu không âm được vì nếu âm hoặc cả 2 âm không mang lại giá trị lớn nhất
Cách tốt nhất thử các n ra rồi so sánh giá trị.
Chúc bạn học tốt^^
Để A nguyên thì
2n - 1 chia hết n - 3
<=> 2n - 6 + 5 chia hết n - 3
<=> 2.(n-3) + 5 chia hết n - 3
=> 5 chia hết n - 3
=> n - 3 thuộc Ư(5) = {-1;1;-5;5}
=> n = 2;4;-1;8
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Để A nguyên => 3A nguyên
Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)
Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)
=> \(3n-1\in\left\{1;7;-1;-7\right\}\)
=> \(3n\in\left\{2;8;0;-6\right\}\)
Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)
Vậy n \(\in\left\{0;-2\right\}\)
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
A=\(\frac{2n-1}{n-3}\)
a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3
2n-1
=2n-6+6-1
=2.(n-3)+5
n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3
Vậy 5 cũng phải chia hết cho n-3
+n-3=1=>n=4
+n-3=5=>n=8
+n-3=-1=>n=2
+n-3=-5=>n=-2
Vậy n thuộc -2;2;8;4
b)Dễ thấy,để A có giá trị lớn nhất n=8
Chúc em học tốt^^
c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3
⇒ 2n-3+8⋮n-3
⇒ 8⋮n-3 ⇒ n-3∈Ư(8)
Ư(8)={...}
⇒n=...
;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee
ĐKXĐ: n<>3
Để A là số nguyên thì \(2n-1⋮3-n\)
=>\(2n-1⋮n-3\)
=>\(2n-6+5⋮n-3\)
=>\(5⋮n-3\)
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)
Hello