K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: n<>3

Để A là số nguyên thì \(2n-1⋮3-n\)

=>\(2n-1⋮n-3\)

=>\(2n-6+5⋮n-3\)

=>\(5⋮n-3\)

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{4;2;8;-2\right\}\)

13 tháng 5 2024

Hello

DD
16 tháng 6 2021

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn. 

31 tháng 8 2020

Để A nguyên => 3A nguyên

Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)

Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)

=> \(3n-1\in\left\{1;7;-1;-7\right\}\)

=> \(3n\in\left\{2;8;0;-6\right\}\)

Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)

Vậy n \(\in\left\{0;-2\right\}\)

12 tháng 5 2020

Ta có \(A=\frac{2n-1}{n+3}\left(n\ne-3\right)\)

\(\Leftrightarrow A=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)

a) Để A đạt giá trị nguyên thì \(\frac{7}{n+3}\)đạt giá trị nguyên

=> 7 chia hết cho n+3

=> n+3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

ta có bảng

n+3-7-117
n-10-4-24
12 tháng 5 2020

\(A=\frac{2n-1}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)

A nguyên => \(\frac{7}{n+3}\)nguyên

=> \(n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n+31-17-7
n-2-44-10
24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

19 tháng 3 2022

c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3

⇒ 2n-3+8⋮n-3

⇒ 8⋮n-3 ⇒ n-3∈Ư(8)

Ư(8)={...}

⇒n=...

19 tháng 3 2022

;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee

5 tháng 2 2017

a,4n+>2n+3nên n =5,6

b,7,8

5 tháng 2 2017

\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Để \(2-\frac{5}{2n+3}\) là số nguyên <=> \(\frac{5}{2n+3}\) là số nguyên

=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }

=> 2n + 3 = { - 5; - 1; 1; 5 }

=> n = { - 4; - 2; - 1 ; 1 }

15 tháng 10 2016

\(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2+\frac{7}{n+3}\)

A nguyên <=>\(2+\frac{7}{n+3}\) nguyên

<=>7 chia hết cho n+3

<=>\(n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

<=>\(n\in\left\{-10;-4;-2;4\right\}\)

Vậy A nguyên khi \(n\in\left\{-10;-4;-2;4\right\}\)

26 tháng 5 2015

A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)

Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên

=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-1;-2;1;-4\right\}\)