K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2+\frac{7}{n+3}\)

A nguyên <=>\(2+\frac{7}{n+3}\) nguyên

<=>7 chia hết cho n+3

<=>\(n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

<=>\(n\in\left\{-10;-4;-2;4\right\}\)

Vậy A nguyên khi \(n\in\left\{-10;-4;-2;4\right\}\)

26 tháng 5 2015

A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)

Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên

=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-1;-2;1;-4\right\}\)

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

10 tháng 9 2020

Trả lời nhanh giúp mình với!

10 tháng 9 2020

B1:

A=1/3+1/3^2+1/3^3+...+1/3^100

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99

3A - A = 1 - 1/3^100 = 2A

A = (1 - 1/3^100)/2

B2:

a) 

để A nguyên <=> n + 3 ⋮ n - 5

=> n - 5 + 8 ⋮ n - 5

=> 8 ⋮ n - 5

=> ...

b) 

để B nguyên <=> 1 - 2n ⋮ n + 3

=> 4 - 2n - 3 ⋮ n + 3

=> 4 - 2(n + 3) ⋮ n + 3

=> 4 ⋮ n + 3

=> ...

9 tháng 6 2015

Để A là số nguyên thì

4n+1\(^._:\)2n+3

=>4n+6-5\(^._:\)2n+3

Vì 4n+6\(^._:\)2n+3

=>5\(^._:\)2n+3

=>2n+3\(\in\)Ư(5)={1;-1;5;-5}

Ta có bảng sau:

2n+3n
1-1
-1-2
51
-5-4

KL: n\(\in\){-1;-2;1;-4}

 

1 tháng 3 2021

Ta có: A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3

Để A có giá trị nguyên <=> n+3∈Ư(7)={±1;±7}n+3∈Ư(7)={±1;±7}

n + 31-17-7
n-2-44-10

Vậy để A có giá trị nguyên thì n = {-2;-4;4;-10}

Để M nguyên thì \(2n-1⋮n+3\)

\(\Leftrightarrow2n+6-7⋮n+3\)

mà \(2n+6⋮n+3\)

nên \(-7⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(-7\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;-7;7\right\}\)

hay \(n\in\left\{-2;-4;-10;4\right\}\)

Vậy: \(n\in\left\{-2;-4;-10;4\right\}\)

a: Để A là phân số thì \(2n+4\ne0\)

=>\(2n\ne-4\)

=>\(n\ne-2\)

b: Thay n=0 vào A, ta được:

\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

Thay n=-1 vào A, ta được:

\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)

Thay n=2 vào A, ta được:

\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)

c: Để A  nguyên thì \(3n-2⋮2n+4\)

=>\(6n-4⋮2n+4\)

=>\(6n+12-16⋮2n+4\)

=>\(-16⋮2n+4\)

=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)