K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2021

Ta có: A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3A=2n−1n+3=2n+6−7n+3=2(n+3)−7n+3=2(n+3)n+3−7n+3=2−7n+3

Để A có giá trị nguyên <=> n+3∈Ư(7)={±1;±7}n+3∈Ư(7)={±1;±7}

n + 31-17-7
n-2-44-10

Vậy để A có giá trị nguyên thì n = {-2;-4;4;-10}

Để M nguyên thì \(2n-1⋮n+3\)

\(\Leftrightarrow2n+6-7⋮n+3\)

mà \(2n+6⋮n+3\)

nên \(-7⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(-7\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;-7;7\right\}\)

hay \(n\in\left\{-2;-4;-10;4\right\}\)

Vậy: \(n\in\left\{-2;-4;-10;4\right\}\)

10 tháng 9 2020

Trả lời nhanh giúp mình với!

10 tháng 9 2020

B1:

A=1/3+1/3^2+1/3^3+...+1/3^100

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99

3A - A = 1 - 1/3^100 = 2A

A = (1 - 1/3^100)/2

B2:

a) 

để A nguyên <=> n + 3 ⋮ n - 5

=> n - 5 + 8 ⋮ n - 5

=> 8 ⋮ n - 5

=> ...

b) 

để B nguyên <=> 1 - 2n ⋮ n + 3

=> 4 - 2n - 3 ⋮ n + 3

=> 4 - 2(n + 3) ⋮ n + 3

=> 4 ⋮ n + 3

=> ...

15 tháng 10 2016

\(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2+\frac{7}{n+3}\)

A nguyên <=>\(2+\frac{7}{n+3}\) nguyên

<=>7 chia hết cho n+3

<=>\(n+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

<=>\(n\in\left\{-10;-4;-2;4\right\}\)

Vậy A nguyên khi \(n\in\left\{-10;-4;-2;4\right\}\)

5 tháng 3 2016

a) \(A=\frac{n-4}{n+3}\left(n\in Z\right)\)

\(A=\frac{\left(n+3\right)-7}{n+3}\)

\(\Rightarrow\left(n+3\right)\inƯ_{\left(7\right)}=\left\{-7;-1;1;7\right\}\)

Lập bảng tìm n:

n+3-7-117
n-10-4-24
Thỏa mãn TMTMTMTM

Vậy \(n\in\left\{-10;-4;-2;4\right\}\)để \(A\in Z\)

b) \(B=\frac{3n-7}{2n+3}\left(n\in Z\right)\)

\(B=\frac{\left(3n+3\right)-10}{2n+3}\)

\(\Rightarrow2n+3\inƯ_{10}=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

Lập bảng tìm n:

2n+3-10-5-2-112510
n-6,5-4-2,5-2-1-0,546,5
Thỏa mãnloạiTMloạiTMTMloạiTMloại

Vậy \(n\in\left\{-4;-2;-1;4\right\}\)để \(A\in Z\)

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)