K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

1 tháng 11 2015

2n^2 là 2. n2 à

 

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

Ta có : n3 - 2n + 3n + 3 

= n3 - n + 3 

= n(n2 - 1) 

= n(n - 1)(n + 1) + 3 

Để n3 - 2n + 3n + 3 chia hết cho n - 1

=> n(n - 1)(n + 1) + 3  chia hết cho n - 1

=> 3  chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-2;0;2;4}

4 tháng 11 2017

n=+-1;+-5

5 tháng 8 2020

Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :

\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)

Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

Vì n nguyên 

\(\Rightarrow2n\in\left\{0;2\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

5 tháng 8 2020

Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)   

=> \(2n^2+3n+3⋮2n-1\)

=> \(4n^2+6n+6⋮\left(2n-1\right)\)

=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)

Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)

=> \(10⋮\left(2n-1\right)\)

=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)

=> n = ...... 

a: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=a^2+4a+4-a^2+4a-4=8a⋮4\)

b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)