Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :
\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)
Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
Vì n nguyên
\(\Rightarrow2n\in\left\{0;2\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)
=> \(2n^2+3n+3⋮2n-1\)
=> \(4n^2+6n+6⋮\left(2n-1\right)\)
=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)
Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)
=> \(10⋮\left(2n-1\right)\)
=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)
=> n = ......
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)