Chứng minh: ( 2n + 4 )x( 3n +5 ) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)
Nếu n chia hết cho 5 ta dễ thấy đpcm
Nếu n : 5 dư 1 => n = 5k + 1
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5
Nếu n : 5 dư 2 => n = 5k + 2
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5)
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5
Nếu n : 5 dư 3 => n = 5k + 3
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5
Nếu n : 5 dư 4 => n = 5k + 4
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6
2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n^3 - n chia hết cho 6
3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6
=> n^3 + 23n chia hết cho 6
4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3]
= 2n(n + 1)(n - 1) + 3n(n + 1)
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
2n(n + 1)(n - 1) chia hết cho 2
=> A chia hết cho 2
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
3n(n + 1) chia hết cho 3
=> A chia hết cho 3
Mà (2 ; 3) = 1 (nguyên tố cùng nhau)
=> A chia hết cho 6
5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n
Chứng minh bằng quy nạp
Với n =1 => A = 0 chia hết cho 24
Giả sử A chia hết 24 đúng với n = k
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24
Ta phải chứng minh :
A chia hết cho 24 đúng với n = k + 1
Nghĩa là :
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1)
Khai triển ta được :
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k)
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1)
= 12k(k - 1)^2 = 12k(k - 1)(k - 1)
12 chia hết 12
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp)
=> A(k + 1) chia hết 24
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm)
6) n = 2k + 1 với k thuộc Z
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3
= 4k^2 + 12k + 8
= 4(k^2 + 3k + 2)
= 4(k + 2k + k + 2)
= 4(k + 1)(k + 2)
4 chia hết cho 4
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ
7) n = 2k + 1
Đặt A = n^3 + 3n^2 - n - 3
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3
= 8k^3 + 24k^2 + 16k
= 8k(k^2 + 3k + 2)
= 8k(k^2 + k + 2k + 2)
= 8k(k + 1)(k + 2)
8 chia hết cho 8
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
=> A chia hết cho 8.6 = 48 với n lẻ
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a,A=(n-1).(n+1)-n^2+3n-5
= n^2 - 1 - n^2 + 3n - 5
= 3n - 6
= 3(n - 2) chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-4)+21
= 2n^2 + n - 1 - 2n^2 + 4n + 21
= 5n + 20 = 5(n + 4) chia hết cho5
A = ( n - 1 )( n + 1 ) - n2 + 3n - 5
= n2 - 1 - n2 + 3n - 5
= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )
A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21
= 2n2 + n - 1 - n( -n ) + 21
= 2n2 + n + 20 + n2
= 3n2 + n + 20 ( cái này chưa chắc được :)) )
53n.52+22n.23=125n.25+4n.8
vì 125n đồng dư với 4n
=> dãy trên đồng dư với 4n . 25 + 4n.8=4n.(8+25)=4n.33
vì 33 chia hết cho 11 =>đpcm
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy....
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Bài 1 bạn kia giải rồi
2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> (6n+15)-(6n+14) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* nên d = 1
=> ƯCLN(2n+5;3n+7) = 1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
3. Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x - 4y chia hết cho 5
=> ĐPCM