Trong vòng đấu loại có 20 đội bóng đá tham dự giải. Các đội phải đấu với nhau 1 trận. Chứng tỏ rằng có ít nhất 2 đội đã chơi 1 số trận như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét một thời điểm bất kỳ của lịch thi đấu ( mỗi đội thi đấu tối đa 9 trận).
Phòng 0: Chứa các đội chưa đấu trận nào.
Phòng 1: Chứa các đội đã thi đấu 1 trận.
……………………………………………….
Phòng 9: Chứa các đội đã thi đấu 9 trận.
Để ý rằng phòng 0 và phòng 9 không thể cùng có đội thi đấu.
Thực chất 10 đội chứa trong 9 phòng.
Đáp án A
Số vòng đấu là vòng đấu (gồm cả lượt đi và về)
Mỗi vòng đấu có 7 trận đấu
Do đó có tất cả trận đấu
Mỗi đội đấu với 9 đội còn lại, số trận là 9.10/2=45 trận ( do mỗi trận được tính 2 lần).
Gọi số trận thắng thua là x, x≤45, x là số tự nhiên, tổng số điểm thu được là 3x.
Số trận hòa là 45-x, tổng số điểm thu được là 2.(45-x)
Vậy có 3x+2.(45-x)=126 → x=36