Đường tròn (C) đi qua A(2;-1) và tiếp xúc với hai trục tọa độ ox và oy khi đó
Đường tròn (C) đi qua điểm N(1;0)
Đường tròn (C) đi qua điểm M(1;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)
Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)
Phương trình trung trực của AB: \(x+3y-5=0\)
Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn
Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow2m^2-4m-1=0\)
\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)
TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)
TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
Kết luận: Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
b, Phương trình đường thẳng AC: \(x+y+1=0\)
Phương trình đường thẳng OA: \(x-y-3=0\)
Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn
Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)
\(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)
Phương trình đường tròn:
\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
(Bởi vì CM trực tiếp hơi khó nên mình CM bằng trùng hình)
Vẽ \(AM\) là trung tuyến của tam giác \(ABC\) và tia \(AE\) thoả \(\widehat{BAE}=\widehat{CAM}\) (trong đó \(E\in\left(O\right)\)). Gọi \(D',N\) lần lượt là trung điểm của \(AE,AC\).
-----
Bước 1: CM: \(\widehat{AD'O}=90^o\) (hiển nhiên).
Bước 2: CM \(D\) trùng với \(D'\).
Tam giác \(ABE\) và \(AMC\) đồng dạng (g.g) nên tam giác phân bởi đường trung tuyến cũng đồng dạng.
Cụ thể là tam giác \(ABD'\) và \(AMN\) đồng dạng.
Suy ra \(\widehat{ABD'}=\widehat{AMN}=\widehat{BAM}\) (so le trong, \(MN\) song song \(AB\)).
Mà \(\widehat{BAM}=\widehat{EAC}\) nên \(\widehat{ABD'}=\widehat{D'AC}\).
Từ đó suy ra \(AC\) tiếp xúc với đường tròn ngoại tiếp \(ABD'\).
Tương tự suy ra \(AB\) tiếp xúc với đường tròn ngoại tiếp \(ACD'\).
Vậy \(D\) trùng với \(D'\) và ta có đpcm.
a. vì AO =2cm nên đường tròn (A,2cm) đi qua O
b, vì CO=CA=2cm nên đường tròn (C,2cm) đi qua A và O
Gọi đường tròn (C) có tâm \(I\left(a;b\right)\) bán kính R
(C) tiếp xúc 2 trục tọa độ \(\Rightarrow d\left(I;Ox\right)=d\left(I;Oy\right)\Rightarrow\left|a\right|=\left|b\right|=R\)
Do (C) qua A nên \(IA=R\)
TH1: \(a=b\Rightarrow I\left(a;a\right)\Rightarrow\overrightarrow{AI}=\left(a-2;a+1\right)\)
\(IA=R\Rightarrow\sqrt{\left(a-2\right)^2+\left(a+1\right)^2}=\left|a\right|\)
\(\Leftrightarrow2a^2-2a+5=a^2\)
\(\Leftrightarrow a^2-2a+5=0\) (vô nghiệm)
TH2: \(b=-a\Rightarrow I\left(a;-a\right)\Rightarrow\overrightarrow{AI}=\left(a-2;-a+1\right)\)
\(IA=R\Rightarrow\sqrt{\left(a-2\right)^2+\left(-a+1\right)^2}=\left|a\right|\)
\(\Leftrightarrow2a^2-6a+5=a^2\)
\(\Leftrightarrow a^2-6a+5=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=-1\\a=5\Rightarrow b=-5\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn:
\(\left[{}\begin{matrix}\left(x-1\right)^2+\left(y+1\right)^2=1\\\left(x-5\right)^2+\left(y+5\right)^2=25\end{matrix}\right.\)
Có lẽ em ghi thiếu đề (để loại bớt 1 nghiệm) nên cả 2 trường hợp đều sai, điểm N(1;0) thuộc đường tròn thứ nhất nhưng ko thuộc đường tròn thứ 2
Còn điểm M(1;1) thì ko thuộc cả 2 đường tròn